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Motivation

I Warp Scheduling. When a warp encounters a long latency
memory operation, it is de-scheduled and a new warp is
scheduled from a pool of active warps.

I This allows memory latency to be overlapped with execution.

I In memory-intensive applications, cores often exhaust all the
active warps thereby exposing the memory latencies.

I Disparate Bandwidth Criticality. When cores with varying
active warps are present in the same epoch, the shared
bandwidth appears more performance critical to cores with few
or no active warps.

(a) backprop (edisp = 53%) (b) kmeans (edisp = 26%)

(c) lud (edisp = 49%) (d) pathfinder (edisp = 72%)

I Greedy Bandwidth Acquisition. Each core employs a greedy
policy to acquire the shared bandwidth in order to maximise its
own bandwidth utilisation, thereby excessively depleting the
shared bandwidth and causing congestion.

I As a result of congestion, memory latencies often exceed the
normal memory latencies by a factor of 2-3×.
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I It is analogous to the Tragedy of the Commons, a problem in
economics where a strategy best for an individual in using an
unregulated common resource may not yield the most optimal
outcome for the group.

Problem Statement

The existing policy of allocating shared on-chip and off-chip memory bandwidth
presents two major shortcomings–

1 allocating bandwidth to cores without regard to their criticality,

2 excessive depletion of shared bandwidth leading to congestion and
therefore high memory latencies.
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More evidence on scope for improvement. The baseline performance is far
from saturation with respect to memory latencies. Therefore, there lies a
significant opportunity to improve performance by regulating the bandwidth
allocation and reducing the performance critical latencies.

Measuring Core Criticality

I Slack Metric. To measure the difference in criticality of shared memory
bandwidth on different cores, we record the slack in utilising a cache line that is
newly fetched from the lower levels of the memory.

I We refer to the slack as positive if the memory response arrives sooner than it
is required to prevent the core from stalling, and negative if the memory
response arrives after the core has stalled.

slackn(t) =

{
k×Wn|active(t) if Wn|active(t) > 0
−tn|stall otherwise

(1)

where:
slackn(t) = Slack of memory response received on core n at time t
Wn|active(t) = No. of active warps on core n at time t
k = Average core busy cycles per warp between consecutive stalls
tn|stall = No. of cycles for which core n has been stalled since last issue
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-ve slack  = 5,422,804 cycles
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(b) dwt2D

In dwt2D, considerable overlap of negative and positive slack presents an
opportunity to trade-off latter with former.
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I 1 Slack-Aware DRAM Scheduling. In epochs with significant
disparity in slack, the proposed scheduler prioritises requests
from cores with negative slack, ahead of row-buffer hits.

I It reduces the memory latencies that lie in the critical path
(reducing negative slack) at the cost of increasing the latencies
that can be hidden by multithreading (reducing positive slack).

Off-chip bandwidth regulation

if   disparity && Δslack(T)   Δthreshold :
FS-FR-FCFS

else: 
FR-FCFS

FS-FR-FCFS:
(First Stalled-First Ready FCFS)
1. Minimum slack first
2. Row-hit first
3. Oldest first

FR-FCFS:
(First Ready FCFS)
1. Row-hit first
2. Oldest first

DRAM Scheduler Queue
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I 2 Request Throttling. To regulate on-chip bandwidth, we
throttle the rate of sending requests to the shared level for
cores that contain high number of active warps, resulting in
reduced congestion in the memory system.

On-chip bandwidth regulation

if   disparity && Δslack(T)   Δthreshold :
preferential bandwidth allocation

else: 
greedy bandwidth allocation
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Results and Future Work. Preliminary results for dwt2D
suggest a 7% reduction in negative slack and a 5% reduction
in AML. The current challenge is to devise cost-efficient
hardware implementation to communicate slack across the
memory system without aggravating the bandwidth bottleneck.


