
Slack-Aware Shared Bandwidth Management in GPUs
Saumay Dublish

saumay.dublish@ed.ac.uk

Advisers: Prof. Nigel Topham, Dr. Vijay Nagarajan

Motivation

I Warp Scheduling. When a warp encounters a long latency
memory operation, it is de-scheduled and a new warp is
scheduled from a pool of active warps.

I This allows memory latency to be overlapped with execution.

I In memory-intensive applications, cores often exhaust all the
active warps thereby exposing the memory latencies.

I Disparate Bandwidth Criticality. When cores with varying
active warps are present in the same epoch, the shared
bandwidth appears more performance critical to cores with few
or no active warps.

(a) backprop (edisp = 53%) (b) kmeans (edisp = 26%)

(c) lud (edisp = 49%) (d) pathfinder (edisp = 72%)

I Greedy Bandwidth Acquisition. Each core employs a greedy
policy to acquire the shared bandwidth in order to maximise its
own bandwidth utilisation, thereby excessively depleting the
shared bandwidth and causing congestion.

I As a result of congestion, memory latencies often exceed the
normal memory latencies by a factor of 2-3×.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

bfs
cfd

dw
t2d

hybridsort

lavaM
D

leukocyte

nn nw sradv1

sradv2

sc bfs’
lbm

sad
stencil

ii m
m

pvr
ss AVG

 100

 200

 300

 400

 500

 600

 700

 800

Is
s
u

e
 S

ta
ll

(%
)

L
a

te
n

c
y

Stall L2-AHL AML

I It is analogous to the Tragedy of the Commons, a problem in
economics where a strategy best for an individual in using an
unregulated common resource may not yield the most optimal
outcome for the group.

Problem Statement

The existing policy of allocating shared on-chip and off-chip memory bandwidth
presents two major shortcomings–

1 allocating bandwidth to cores without regard to their criticality,

2 excessive depletion of shared bandwidth leading to congestion and
therefore high memory latencies.

 0

 1

 2

 3

 4

 5

 6

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Performance plateau

IP
C

 (
n

o
rm

a
liz

e
d

 t
o

 b
a

s
e

lin
e

)

L1 miss latency

cfd
dwt2d

leukocyte
nn
nw
sc

lbm
ss

More evidence on scope for improvement. The baseline performance is far
from saturation with respect to memory latencies. Therefore, there lies a
significant opportunity to improve performance by regulating the bandwidth
allocation and reducing the performance critical latencies.

Measuring Core Criticality

I Slack Metric. To measure the difference in criticality of shared memory
bandwidth on different cores, we record the slack in utilising a cache line that is
newly fetched from the lower levels of the memory.

I We refer to the slack as positive if the memory response arrives sooner than it
is required to prevent the core from stalling, and negative if the memory
response arrives after the core has stalled.

slackn(t) =

{
k×Wn|active(t) if Wn|active(t) > 0
−tn|stall otherwise

(1)

where:
slackn(t) = Slack of memory response received on core n at time t
Wn|active(t) = No. of active warps on core n at time t
k = Average core busy cycles per warp between consecutive stalls
tn|stall = No. of cycles for which core n has been stalled since last issue

 0

 40000

 80000

 120000

 160000

-300
-200

-100
 0 100

 200
 300

+ve slack = 115,085,381 cycles

-ve slack = 5,422,804 cycles

Overlap = 67%

Stall = 78%

AML = 425 cycles#
 M

e
m

o
ry

 R
e

s
p

o
n

s
e

s

Slack (cycles)

(a) bfs

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

-300
-200

-100
 0 100

 200
 300

+ve slack = 3,534,132 cycles

-ve slack = 5,197,822 cycles

Overlap = 22.19%

Stall = 57%

AML = 461 cycles

M
e

m
o

ry
 r

e
s
p

o
n

s
e

s

Slack (cycles)

(b) dwt2D

In dwt2D, considerable overlap of negative and positive slack presents an
opportunity to trade-off latter with former.

Shared Bandwidth Management

Fetch

Decode

Issue LSU D$
M

S
H

R

I$

MSHR

Instruction Cache

L1 Data Cache

L1 Miss Queue

Inst. Miss Queue

Response FIFO

In
te

rco
n

n
e

ct

Crossbar
Injection Port

SIMT Core
FPU

L2 access queue

L2 response
queue

L2 Bank

L2 miss queue

to DRAM

from DRAM

DRAM response
queue

MSHR

Memory Partition

I 1 Slack-Aware DRAM Scheduling. In epochs with significant
disparity in slack, the proposed scheduler prioritises requests
from cores with negative slack, ahead of row-buffer hits.

I It reduces the memory latencies that lie in the critical path
(reducing negative slack) at the cost of increasing the latencies
that can be hidden by multithreading (reducing positive slack).

Off-chip bandwidth regulation

if disparity && Δslack(T) Δthreshold :
FS-FR-FCFS

else:
FR-FCFS

FS-FR-FCFS:
(First Stalled-First Ready FCFS)
1. Minimum slack first
2. Row-hit first
3. Oldest first

FR-FCFS:
(First Ready FCFS)
1. Row-hit first
2. Oldest first

DRAM Scheduler Queue

M0
C0/R0

M1
C1/R1

M2
C2/R2

M3
C3/R3

M4
C0/R0

M5
C1/R1

M6
C2/R2

M7
C3/R3

M8
C0/R0

M9
C0/R0

FS-FR-FCFS:

M1
C1/R1

M5
C1/R1

M3
C3/R3

M7
C3/R3

M2
C2/R2

M6
C2/R2

M0
C0/R0

M4
C0/R0

M8
C0/R0

M9
C0/R0

FR-FCFS:

M0
C0/R0

M4
C0/R0

M8
C0/R0

M9
C0/R0

M1
C1/R1

M5
C1/R1

M2
C2/R2

M6
C2/R2

M3
C3/R3

M7
C3/R3

time

C0

C1

C2

C3

slack(t=T)

+40

-30

+20

+5

I 2 Request Throttling. To regulate on-chip bandwidth, we
throttle the rate of sending requests to the shared level for
cores that contain high number of active warps, resulting in
reduced congestion in the memory system.

On-chip bandwidth regulation

if disparity && Δslack(T) Δthreshold :
preferential bandwidth allocation

else:
greedy bandwidth allocation

C0

C1

C2

C3

On-chip Bandwidth Spectrum

C0

C1

C2

C3

Greedy bandwidth allocation Preferential bandwidth allocation

Results and Future Work. Preliminary results for dwt2D
suggest a 7% reduction in negative slack and a 5% reduction
in AML. The current challenge is to devise cost-efficient
hardware implementation to communicate slack across the
memory system without aggravating the bandwidth bottleneck.

