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Characterize• : Understand the bandwidth bottlenecks across different 

levels of the memory hierarchy such as L1, L2 and DRAM

Cause• : Investigate the architectural causes for congestion

Effect• : Design-space exploration to evaluate the effect of mitigating 

congestion

Proposal• : Use cause and effect analysis to present cost-effective 

configurations of the memory hierarchy 
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Platform•
GPGPU• -Sim (v3.2.2)

GPUWattch• (McPAT)

Benchmark Suites•
Rodinia•

Parboil•

MapReduce•
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GTX • 480 NVIDIA GPU

15• SMs 

Private L• 1 Data Cache (16 KB; 32 MSHRs)

Shared L• 2 Cache (768 KB; 32 MSHRs/bank)

• L1-L2 Interconnect (Crossbar; 32+32 bytes)

DRAM (• 384 bits bus width)
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Performance plateau

Latency tolerance

Performance versus Latency curve for memory-intensive benchmarks

Latency appears in the critical path
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Performance plateau

[  120 cycles   , 220 cycles  ]
Ideal L2 access latency Ideal DRAM access latency

Added latencies due to increasing congestion
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Performance plateau

Baseline memory latencies critically higher than 1. performance plateau latencies

Baseline memory latencies critically higher than 2. ideal access latencies to L2/DRAM 

Observations about “baseline memory latencies”

[  120 cycles   , 220 cycles  ]
Ideal L2 access latency Ideal DRAM access latency

Baseline Memory Latencies

Far from 

saturation

(theoretically 

possible)

Practically possible

to improve 

performance

Latency Tolerance

1x
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2.37x
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2.37x

1.15x

Significant congestion in the cache hierarchy
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While the • bandwidth provided decreases in the lower 

levels of the memory hierarchy, bandwidth demand does 

not reduce proportionally.

This leads to a • bandwidth skew between adjacent levels.  

As a result, requests • queue up in the memory hierarchy for 

long durations, causing congestion. 

• L2 access queues are full for 46% of its usage lifetime.

DRAM access queue• are full for 39% of its usage lifetime
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Core

DRAM

L2

L1

Prolonged • contention for cache resources such as MSHRs 

or replaceable cache lines.

Pending requests must • complete and relinquish the 

resources.

Therefore, new miss requests get • serialized, increasing the 

memory latencies even more. 

L1 MSHR

L2 MSHR Structural Hazard

FULL MISS

High cache hit latencies

HIT?

Structural  Hazards• Back Pressure•
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Core

DRAM
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Cascading effect of structural hazards•

Higher level gets throttled•

Eventually throttles core performance•
L1 MSHR

L2 MSHR

X
X

STALL

Restricted parallelism on cores

Independent compute?

Causes of congestion

Structural  Hazards• Back Pressure•
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DRAM

L2

L1

L1 MSHR

L2 MSHR

48%

1. L1 MSHR : 41%   (Structural Hazards)

2. L2 back pressure : 48%   (Back pressure)

Major causes of stalls at L1

Structural  Hazards•

L1 cache stalls

Causes of congestion
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Core

DRAM

L2

L1

L1 MSHR

L2 MSHR

42%

Crossbar 1. (response path) : 42%  (Back pressure)

DRAM 2. : 35%  (Back pressure)

Major causes of stalls at L2

35%

Back Pressure•Structural  Hazards•

Causes of congestion
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Core

DRAM

L2

L1

L1 MSHR

L2 MSHR

Category• -1: Operate at peak throughput

Minimize stalls by exploiting existing peak throughput•

e.g. MSHRs, Access Queue size•

Category• -2: Increase peak throughput

Minimize stalls by increasing the peak throughput•

e.g. Crossbar flit size, DRAM bus width•

Classifying the Design Space
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Core

DRAM

L2

L1

L1 MSHR

L2 MSHR

• L1 parameters
• L1 Miss Queue

• L1 MSHR

Memory pipeline width•

• L2 parameters
• L2 Miss/Response Queue

• L2 MSHR

• L2 Data Port Width

• L2 Banks

Flit Size (Crossbar)•

DRAM parameters•
Scheduler Queue •

Banks•

Bus width•
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Scaling L1 parameters by 4x

4%
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Scaling L1 parameters by 4x

4%- 33% - 25%- 13% - 7%

Improving bandwidth in isolation can lead to even more congestion at 

the lower levels

Mitigating congestion
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Improving bandwidth in isolation can lead to even more congestion at 

the lower levels

Core frequency scaling on real GTX 480

Mitigating congestion

Up to 23% slowdown
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Scaling L2 parameters by 4x

59%

Shows the criticality of the L2 bandwidth

Mitigating congestion
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Scaling DRAM parameters by 4x 

(HBM)

11%

Mitigating congestion
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Scaling L1 and L2 parameters by 4x

69%

59%

4%

- 13%

212% 226%

A case for synergistic scaling!

Mitigating congestion
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Scaling L1 and L2 parameters by 4x

69%
11%

Higher speedup on mitigating congestion in the cache hierarchy

compared to DRAM (as done in HBM)  

Mitigating congestion
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76%

Scaling L2 and DRAM parameters by 4x

Mitigating congestion
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90%

Scaling the entire memory hierarchy by 4x

Mitigating congestion
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Scaling all architectural parameters by • 4x impractical

Need to prune the design space•

We now know the • …

Causes• of congestion (at each memory level)

Effects• of reducing congestion (at different memory levels)

Cost effective configuration

Mitigate causes where the effect is maximum

Boost bandwidth resources where it hurts most!        
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• L1 parameters
• L1 Miss Queue

• L1 MSHR

Memory pipeline width•

• L2 parameters
• L2 Miss/Response Queue

• L2 MSHR

• L2 Data Port Width

• L2 Banks

Flit Size (Crossbar)•

DRAM parameters•
Scheduler Queue •

Banks•

Bus width•
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• L1 parameters
• L1 Miss Queue

• L1 MSHR

Memory pipeline width•

• L2 parameters
• L2 Miss/Response Queue

Flit Size (Crossbar)•

Simple Buffers

Minimal cost of scaling

Scale by 4x



Cost-effective design-space

36
Evaluating and Mitigating Bandwidth Bottlenecks Across the 

Memory Hierarchy in GPUs
25/04/2017

• L1 parameters
• L1 Miss Queue

• L1 MSHR

Memory pipeline width•

• L2 parameters
• L2 Miss/Response Queue

Flit Size (Crossbar)•

Fully Associative 

Array

Moderate cost of scaling

Scale by 1.5x
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• L1 parameters
• L1 Miss Queue

• L1 MSHR

Memory pipeline width•

• L2 parameters
• L2 Miss/Response Queue

Flit Size (Crossbar)•
32+32 Baseline Crossbar

Scales quadratically with flit size

“Asymmetric Crossbar”
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Core

DRAM

L2

L1

L1-L2 

Crossbar

Symmetric 

Crossbar

L1 L1

L2 L2

Asymmetric 

Crossbar

32+32 = 64 16+48 = 64

32 bytes

request
16 bytes

request

32 bytes

response
48 bytes

request

No wiring overhead

16+68 / 32+52 = 84
Wiring overhead of 20 bytes

Point-to-point

Wiring

(bytes)

Control 

(8 bytes)

Cache line

(128 bytes)

Reads >> Writes
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• L1 Cache
• L1 Miss Queue             :   8 entries  32 entries

Memory pipeline width : • 10 wide     40 wide

• L1 MSHR                    : 32 entries  48 entries

• L2 Cache
• L2 Miss/Response Queue : 8 entries  32 entries

Flit Size (Crossbar)           : • 32+32     16+48 (=64); 16+68/32+52 (=84)

Evaluate 3 cost-effective configurations: 16+48    16+68     32+52
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Cost-effective configurations

23%

Area overhead: 1.1%

Point-to-point wires remains same as baseline
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Cost-effective configurations

Area overhead: 1.6%

25%29%

Investing in the response path gives better returns
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Cost-effective configurations

11%

Higher speedup on resolving bandwidth bottleneck in cache hierarchy

25%

29%

Configuration with synergistic scaling (of L1 and L2) and

asymmetric crossbar with higher response bandwidth (16+68) performs best
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Problem•

High congestion • across the memory hierarchy

Congestion leads to high memory latencies (• both to L2 and DRAM)

High latencies • appear in the critical path for memory-intensive 

applications, causing slowdown

Observation•

Characterize • stalls and develop insights about bandwidth bottleneck

Significant bandwidth bottleneck in the • cache hierarchy

Addressing bandwidth problem in • isolation can even lead to slowdown

Proposal•

Synergistic scaling• of bandwidth of L1 and L2 cache

Asymmetric scaling • of bandwidth of crossbar

23• % speedup with 1.1% area overhead (no additional wires in crossbar)

29• % speedup with 1.6% area overhead (additional wiring in crossbar)
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Saumay Dublish

saumay.dublish@ed.ac.uk

http://homepages.inf.ed.ac.uk/s1433370/


