Cooperative Caching for GPUs

SAUMAY DUBLISH, VIJAY NAGARAJAN, and NIGEL TOPHAM, University of Edinburgh

The rise of general-purpose computing on GPUs has influenced architectural innovation on them. The
introduction of an on-chip cache hierarchy is one such innovation. High L1 miss rates on GPUs, however,
indicate inefficient cache usage due to myriad factors, such as cache thrashing and extensive multithreading.
Such high L1 miss rates in turn place high demands on the shared L2 bandwidth. Extensive congestion in
the L2 access path therefore results in high memory access latencies. In memory-intensive applications,
these latencies get exposed due to a lack of active compute threads to mask such high latencies.

In this article, we aim to reduce the pressure on the shared L2 bandwidth, thereby reducing the memory
access latencies that lie in the critical path. We identify significant replication of data among private L1
caches, presenting an opportunity to reuse data among L1s. We further show how this reuse can be exploited
via an L1 Cooperative Caching Network (CCN), thereby reducing the bandwidth demand on L2. In the
proposed architecture, we connect the L1 caches with a lightweight ring network to facilitate intercore
communication of shared data. We show that this technique reduces traffic to the L2 cache by an average
of 29%, freeing up the bandwidth for other accesses. We also show that the CCN reduces the average
memory latency by 24%, thereby reducing core stall cycles by 26% on average. This translates into an overall
performance improvement of 14.7% on average (and up to 49%) for applications that exhibit reuse across
L1 caches. In doing so, the CCN incurs a nominal area and energy overhead of 1.3% and 2.5%, respectively.
Notably, the performance improvement with our proposed CCN compares favorably to the performance
improvement achieved by simply doubling the number of L2 banks by up to 34%.

CCS Concepts: ® Computer Systems Organization — Single Instruction, Multiple Data;
Additional Key Words and Phrases: GPGPU, bandwidth bottlenecks, intercore reuse

ACM Reference Format:

Saumay Dublish, Vijay Nagarajan, and Nigel Topham. 2016. Cooperative Caching for GPUs. ACM Trans.
Archit. Code Optim. 13, 4, Article 39 (December 2016), 25 pages.

DOILI: http://dx.doi.org/10.1145/3001589

1. INTRODUCTION

Current GPUs are no longer perceived as accelerators solely for graphic workloads
and now cater to a much broader spectrum of applications. In a short time, GPUs have
proven to be of substantive significance in the world of general-purpose computing. The
massive compute power of GPUs and recent innovations in their architecture [NVIDIA
2009, 2012] have helped to unleash the latent potential of several non-graphical
applications, adding momentum to the rise of general-purpose computing on GPUs
(GPGPUs).

Motivated by the pervasive impact of GPUs in the field of general-purpose comput-
ing, manufacturers have introduced configurable on-chip cache hierarchies to their
recent architectures to cater to the locality needs of non-streaming applications. De-
spite performance improvement for certain applications, however, the utilization of

Authors’ addresses: S. Dublish, V. Nagarajan, and N. Topham, School of Informatics, University of Edinburgh,
UK; emails: {saumay.dublish, vijay.nagarajan, nigel.topham}@ed.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2016 ACM 1544-3566/2016/12-ART39 $15.00

DOI: http://dx.doi.org/10.1145/3001589

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

http://dx.doi.org/10.1145/3001589
http://dx.doi.org/10.1145/3001589

39:2 S. Dublish et al.

100
90 L1-Miss
80 L1-Replication
70
60
50
40
30
20
10

4, % %

v
%

X

% %,
S

%,

Fig. 1. (a) L1-Miss: L1 cache miss rates. (b) L1-Replication: Percentage of L1 misses cached in remote L1
caches.

these caches is far from perfect; this is evident from the high cache miss rates seen
on many GPUs. As shown in Figure 1(a), on NVIDIA’s Fermi GPU, general-purpose
applications across a variety of benchmark suites show high L1 miss rates, indicat-
ing that the current cache management techniques are unable to utilize these caches
effectively. As a consequence of high L1 miss rates, pressure on the L2 bandwidth in-
creases, thereby increasing the memory access latencies due to congestion in the L2
access path. In our experiments (discussed later in Section 5), we observe that due to
congestion in the L1-L.2 interconnect and L2 access queues, L2 accesses take up to 2
to 3x more cycles compared to the normal access latency of L.2. In memory-intensive
applications, due to lack of active compute threads to overlap such high memory access
latencies, increased latencies to the lower-level get exposed and appear in the critical
path [Dublish et al. 2016], reducing system performance.

Goal. In this article, our goal is to reduce the memory access latencies that cannot
be hidden by multithreading in memory-intensive applications. Since one of the major
reasons for such high latencies is the congestion in the L2 access path (due to the high
number of requests sent to the lower-level), we aim to reduce this congestion.

Observation. In streaming applications, cores work on independent data with little
or no overlap in the working dataset. However, in general-purpose applications, we
observe a considerable potential for data reuse across different cores. Figure 1(b) shows
that a significant percentage of miss requests generated by L1s is for data already
present on a non-local (or remote) L1 cache. If we can exploit this reuse within Lls,
duplicate requests to the shared L2 can be potentially eliminated. This would result in
reduced congestion and faster lower-level access for the remaining requests.

Proposal. In this article, we propose a Cooperative Caching Network (CCN) for L1
caches in GPUs to improve the efficiency of the L1 cache hierarchy in filtering the
requests to the L2 cache. In our proposed scheme, we connect the private L1 caches in
a lightweight ring network to facilitate communication of reusable data among the L1
caches. In doing so, we reduce the average memory access latency due to the following
two reasons. First, a fraction of L1 load misses, with reusable data cached on remote
L1s, can now completely bypass the high latency access path to L2. They are instead
serviced by the CCN with significantly lower latencies (42 cycles on average based on
our experiments) as compared to the L2 round-trip access latencies, or simply L2 access
latencies (which is approximately 300 cycles due to congestion). Second, cooperatively
sharing reusable data within the L1 caches via the CCN reduces the traffic to the L2
cache. This relieves the pressure on the interconnect, as well as on the L2 access queues,
thereby reducing the L2 access latencies (by 78 cycles on average). Thus, the CCN
provides a faster access to L2 for miss requests that do not find a sharer in the CCN.

In effect, our proposed architecture services a portion of L1 misses collaboratively
within the L1 caches with much lower latencies than the L2 access latency. This leads
to less congestion in the L2 access path, thereby accelerating memory response for

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

Cooperative Caching for GPUs 39:3

requests that do not find a reusable copy in remote L1 caches. However, in the absence
of reuse (e.g., in streaming applications), unsuccessful probes in the CCN add an addi-
tional overhead to the L1 load misses. In such cases, due to no reduction in congestion,
the CCN overhead does not get compensated and results in an overall performance
penalty. Therefore, in our final scheme, we propose Cooperative Caching Network with
Request Throttling (CCN-RT). It dynamically adapts to the coarse-grain reuse patterns
shown across an entire application, thereby bypassing the CCN when there is little or
no reuse.
In summary, we make the following contributions:

—We provide fresh insight into the intercore reuse patterns within GPUs by profiling
the communication characteristics over a diverse range of GPGPU applications.

—We propose the CCN, a cooperative caching architecture for GPUs that is cognizant
of the intercore reuse.

—By servicing reusable requests via the CCN, we reduce the overall bandwidth demand
on the L2 cache, boosting performance for memory-intensive applications that show
high levels of sharing across L1s.

—With our final proposal, CCN-RT, we show an average performance gain of 14.7% for
applications that exhibit reuse while being benign to applications with no reuse.

—We also reduce the average memory latency (AML) by 24%, 1.1 to L2 traffic by 29%,
and core stall cycles by 26%. Our proposal incurs nominal area and energy overheads
of 1.3% and 2.5%, respectively.

The remainder of the article is organized as follows. Section 2 provides an overview
of the baseline architecture for our study and characterizes the workloads. Section 3
investigates the reuse patterns for general-purpose applications and assesses the ef-
ficacy of cooperative caching in GPUs. Section 4 presents our CCN for L1 caches in
GPUs. Section 5 evaluates the architecture and proposed optimizations to our baseline
proposal. Section 6 compares the CCN to alternate solutions. Section 7 discusses the
related work and positions our findings in the current state of the art, and Section 8
concludes the article by summarizing the findings and contributions of this work.

2. BACKGROUND
2.1. CUDA Programming Model

A typical CUDA program consists of data-parallel structures called kernels, which
are executed on the GPU. The large number of threads of a kernel are organized into
structured blocks of computation known as thread blocks. Each thread block consists of
several smaller group of threads called warps—the smallest granularity of scheduling
threads in a GPU core.

2.2. Baseline Architecture

As shown in Figure 2, a typical GPU consists of several execution units organized
in a set of highly multithreaded and pipelined cores that are referred to as streaming
multiprocessors (SMs?). In this study, we consider a baseline similar to NVIDIA’s Fermi
architecture. Our baseline GPU consists of 15 SMs, each with a 32-lane SIMD unit.
Each core consists of a private L1 data cache, shared memory (scratchpad), and read-
only texture and constant caches. Private caches of a core are backed by a shared L2
cache that has an access latency of around 120 cycles for non-texture accesses. The L1
data caches are non-coherent and employ write-through, no-write-allocate policy. The
baseline parameters are summarized later in Table II.

In this article, we use the terms core and SM interchangeably.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

39:4 S. Dublish et al.

SM SM

Fig. 2. Baseline GPU architecture.

2.3. Benchmarks

For the purpose of this study, we use CUDA applications from three major general-
purpose benchmark suites: Rodinia (v3.0) [Che et al. 2009], MapReduce [He et al.
2008], and Parboil [Stratton et al. 2012]. We categorize the benchmarks according to
their sensitivity to the memory hierarchy. Table I lists the benchmarks sorted by the
speedup (PerfX) shown on a perfect memory system that has zero access latency to
lower-level memories and infinite bandwidth between memory hierarchies on a Fermi-
like GPU.

A program is said to be memory-intensive if it constitutes several threads comprising
long latency memory operations. The performance of memory-intensive applications is
usually bounded by the bandwidth to lower-level memories. This is because a large
number of memory requests are kept waiting in each memory partition due to limited
bandwidth, thereby delaying memory responses and causing the cores to potentially
stall. Therefore, the magnitude of speedup on a perfect memory system essentially
indicates the gravity of bandwidth problem in the benchmarks.

3. NEED FOR COOPERATION

Graphics and general-purpose workloads exhibit different memory access patterns.
In graphics applications, kernels operate on independent data of streaming nature,
and therefore different thread blocks are executed in considerable isolation. On the
other hand, general-purpose applications show varying amounts of reuse within the
thread blocks and also at the boundaries with neighboring thread blocks. For instance,
in scientific application such as computation of Coulombic potential (cutcp), atoms are
organized in a 3D lattice. A subgroup of atoms constitutes a thread block, and the entire
lattice is divided into multiple thread blocks. To compute the potential difference on the
atoms at the edges and corners of a sublattice (or thread block), Coulombic potential
contributed by atoms from surrounding sublattices needs to be read and hence requires
sharing and reuse of data among neighboring thread blocks. When such thread blocks
are scheduled on different cores on a GPU, it results in intercore reuse. In current
GPUs, reuse across thread blocks on different cores can only be exploited by localizing
the data on the L2 cache and not any closer. But in doing so, cores have to incur the
congestion delays in the L1-L2 interconnect, as well as the delays in the L2 access

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

Cooperative Caching for GPUs 39:5

Table I. Benchmark Characterization

| S.No.] Suite | Benchmark | ABV. | Dataset [PerfX[uRC |
1 |MapReduce| Matrix Multiplication mm 768 x 768 data points 9.86 | 4%
2 |MapReduce Similarity Score SS 1024 x 256 data points 6.18 | 28%
3 Rodinia Computational Fluid cfd 200000 elements 6.17 |51%
4 |MapReduce Page View Rank pvr 21MB 5.93 |32%
5 Rodinia Stream Cluster sc 16384 points; 256 dimension 5.49 | 18%
6 Rodinia Breadth-First Search bfs’ 1000000 nodes 5.18 | 3%
7 Rodinia Wavelet Transform dwt2d 1024 x 1024 4.96 | 7%
8 Parboil |Lattice-Boltzmann Method| lbm 120 x 120 x 150 data points 4.49 | 0%
9 |MapReduce K-Means km 10000 x 3 data points; 24 clusters| 3.85 | 24%
10 Rodinia Hybrid Sort sort 4194304 floating points 3.68 | 1%
11 Parboil Breadth-First Search bfs 8500000 nodes 3.57 | 6%
12 Rodinia Particle Potential lavaMD 7 x 7 x 7 boxes 2.81 | 1%
13 Parboil 2D Histogram histo 10000 x 4 dimension 2.63 | 1%
14 |MapReduce String Match sm 4MB 2.52 | 3%
15 Rodinia Cardiac Myocyte myocyte 100 instances 2.38 | 1%
16 Rodinia Needleman-Wunsch nw 2048 x 2048 data points 2.31 | 8%
17 Rodinia Graph Traversal b+tree 10000 nodes 2.21 | 25%
18 |MapReduce Inverted Index ii 28MB 2.19 | 2%
19 Rodinia Particle Filter pfloat 128 x 128 x 10 2.15 | 8%
20 Rodinia Tracking Microscopy leukocyte 176MB 1.88 | 1%
21 |MapReduce Word Count wce 96KB 1.86 | 54%
22 Parboil Sum of Absolute Diff. sad 52KB vs. 52KB frame 1.76 | 3%
23 Rodinia Speckle Reduction sradvl 512 x 512 data points 1.74 |15%
24 Rodinia Speckle Reduction sradv2 2048 x 2048 data points 1.70 | 16%
25 Parboil Cartesian Gridding mri-g 61MB 149 | 2%
26 Rodinia K-Means kmeans | 204800 data points; 34 features | 1.47 | 0%
27 Rodinia Matrix Decomposition lud 2048 x 2048 data points 1.27 | 28%
28 Parboil PDE Solver stencil 512 x 512 x 64 input 1.23 | 6%
29 Rodinia Heart Wall Tracking heartwall 49MB 1.19 | 0%
30 Rodinia Back Propagation backprop 65536 input nodes 1.10 | 3%
31 Rodinia Thermal Modeling hotspot 512 x 512 data points 1.07 |29%
32 Parboil Coulombic Potential cutcp 96604 atoms 1.00 | 78%
33 Parboil MRI Reconstruction mri-q 64 x 64 x 64 data points 1.00 | 0%
34 Parboil Angular Correlation tpacf 10391 data points 1.00 | 19%

Note: PerfX, speedup with perfect memory; uRC, percentage of total L1 load misses that have reusable data
on a remote L1.

queues. Thus, for those applications that are bounded by the bandwidth to the lower
level, it degrades the overall performance by clogging the access path to L2.

3.1. Intercore Reuse

To quantify the degree of temporal and spatial reuse of global data between thread
blocks, we analyze the L1 miss traffic of each core. In Table I, we show the reuse
coefficient (uRC), which is the percentage of miss requests received by the L2 cache
from private L1 caches for addresses that reside remotely on at least one L.1 cache. We
see a maximum uRC of up to 78% with an average of 14% across all benchmarks. A
high ©RC for some benchmarks indicates that reuse requests from L1 caches form a
large portion of traffic to L2. It is worth noting that we only consider it as reuse if the
load miss address is cached on a remote L1 at the time of the miss.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

39:6 S. Dublish et al.

14 | | 14
13 | | 13
12 | | 12
11 | | 11
10 m 10
x _ x
S £ 7 B £ 7
£ g ¢ - g
5 [5
4 | | 4
3 fezs) 3
2 I 2
1 1
0 i ol |
01 23456 7 891011121314 01 23456 7 891011121314 01 23456 7 8 910111213 14
REQUESTING CORES REQUESTING CORES REQUESTING CORES
(a) cutcp (b) dwt2d (¢) km
14
13
12
11 |
10 [|
12} 1%} 1%l 9
g s g £ s
x 7 &~ x 7
Z 6] =)
Z i Z
4 4
3 3
2 2
1 1
0 | | 0
01 23456 78 91011121314 4 5 6 7 8 9 10111213 14 0123456 7 8 91011121314
REQUESTING CORES REQUESTING CORES REQUESTING CORES
(d) tpacf (e) pvr (f) pfloat

LOwW HIGH

(g) Reuse score

Fig. 3. Heatmaps indicating intercore reuse by cores on the x-axis for data cached on the cores on the y-axis.
Dark spots in the heatmaps indicate high reuse between the corresponding cores at their x and y coordinates.

In Figure 3, we further characterize the intercore reuse patterns at the granularity
of each core with every other core, providing deeper insight into the reuse dynamics.
For brevity, we show the set of distinct observed patterns and omit those that replicate
the patterns shown here. The x-axis indicates the cores that incur an L1 load miss,
and the y-axis indicates the sharers for that miss. A dense area in the heatmap at an
(x, y) coordinate indicates that a high proportion of load miss requests by core-x are
cached by L1 at core-y. For instance, cutcp shows a prominent reuse of data cached
at a distance of four cores from the location of the miss, dwt2d shows a strong reuse
between neighbors, km shows a gradual decline in reuse as we go further from the core,
and ¢pacf shows considerable levels of reuse across all cores.

3.2. Efficacy of Cooperation

In the previous section, we showed that for general-purpose applications there is con-
siderable reuse across L1 caches. We refer to those load requests as reuse requests that
miss in the local L1 but hit in a remote L1. By removing such reuse requests (also quan-
tified as uRC) from the pool of total misses going to the L2 cache, we can reduce the
pressure on L2 bandwidth. To assess the efficacy of reducing the bandwidth demand on
the overall performance, we begin by examining the performance improvement when
the reuse requests do not congest the access path to L2. In these cases, reuse requests
are instead serviced cooperatively within L1s with varying remote L1 access latencies,
or reuse latencies. Since applications with a low ©RC are not expected to show any
change, we focus on benchmarks with a high ¢RC. Later, we demonstrate the effect of
our final proposal on applications with a low or zero uRC as well.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

Cooperative Caching for GPUs 39:7

80

70— Cfd ——
Stable L2 access latency range hotspot

60 freuse latency lud —=—1

s0 L range SC o,

Exposed latency range

40

\\

IPC improvement (%)

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Remote L1 access latency

Fig. 4. Speedup of cooperation with varying remote L1 access latencies.

Figure 4 shows the speedup due to cooperation and demonstrates a noticeable im-
provement in performance, specifically for memory-intensive applications with a high
uRC. For instance, cfd and pur show performance improvements of up to 73% and 38%,
respectively. Both of these applications are severely bounded by the memory bandwidth
and at the same time exhibit high reuse. On the other hand, despite high reuse in cutcp
and hotspot, there is no significant gain in IPC since bandwidth is not critical for these
benchmarks.

Another key observation in this study pertains to the variation of performance as a
function of remote L1 access latency. We observe that the performance improvement
in the region between 0 and 80 cycles is fairly stable, with the average IPC gain only
changing from 21.5% to 18.8%. This is because in this region, latencies to remote L1s
can be effectively hidden by the multithreading on the cores. Moreover, due to reduced
congestion in the L2 access path and due to faster response to reuse requests (compared
to L2 accesses), the average number of active compute threads on a core increases. This
boosts the ability of the cores to further mask the memory access latencies. Due to these
effects, reuse latencies up to 80 cycles are effectively hidden by multithreading and do
not determine the execution time. However, on further increasing the reuse latencies,
performance improvement starts to degrade more rapidly. In fact, the IPC gain returns
to nearly 0% when the reuse latencies are varied in the range of L2 access latencies
(around 300 cycles). This is because latencies for reuse requests become increasingly
exposed and can no longer be hidden by multithreading, despite reduced congestion.

In summary, these initial results indicate that for memory-bound applications, when
there is considerable reuse of data across L1 caches, cooperation among the private
L1 caches can result in a considerable speedup (up to 21.5% on average). Notably, the
observed performance improvement is fairly stable in the reuse latency range of 0 to
80 cycles.

4. COOPERATIVE CACHING

In the previous sections, we observed a potential for cooperative caching on GPUs
and assessed its efficacy. We now propose a cooperative caching framework to use the
private L1 data caches in an aggregate manner. We begin by formalizing the preceding
discussion and analyzing the parameters that contribute to the L2 access latencies
for L1 miss requests. Later, we propose a cooperative caching scheme and discuss the
architectural details.

4.1. Analytical Model

Here we present a simple analytical model to explain the conditions under which reuse
delivers a performance gain. First, in the absence of cooperation between L1s, let /o

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

39:8 S. Dublish et al.

be the AML to access the shared L2 cache. Second, with cooperation between L1s, let
hreuse be the fraction of L1 misses that hit in a remote L1 cache. Furthermore, let /.,
be the average hit latency for accesses to remote L1s. As a consequence of reduced
congestion in the L2 access path due to remote L1 hits, let 8..,; be the reduction in
L2 access latency. And finally, let 8,.erneaqd be the cooperation overhead borne by those
requests that do not have a shared copy. Therefore, the new AML to L2 upon enabling
cooperation, /¢, can be obtained via Equation (1).

lC = (ZO - Scong + Soverhead)-(l - hreuse) + lreuse-hreuse (1)
breuse < lo Criteria for useful cooperation (2)
Soverhead < 800ng

To derive gain from cooperative caching, /[must be minimized. Therefore, remote
L1 accesses for reuse requests must take less time than a normal L2 access (i.e.,
Lrewse < lo). Additionally, we have already seen in Figure 4 that the maximum gain from
cooperation is sustained in the lower reuse latency range (i.e., Lcuse € (0, 80)). Finally,
for the remaining L2 accesses, the cooperation overhead must be less than the benefit
obtained from reducing the congestion in the L2 access path (i.e., Ssverhead < Scong)- A
combination of preceding conditions will result in a lower average L2 access latency
(i.e., lc < lo).

How should we go about implementing the cooperative caching framework? Following
the approach of traditional multicores, a central directory in the L2 cache [Lebeck and
Wood 1995; Acacio et al. 2002; Kaxiras and Keramidas 2010] can be used to store
information about the sharers. However, maintaining a directory as part of the L2
will not mitigate the existing bandwidth problem in accessing the L2 and instead will
only worsen it. This is because the additional control and update traffic to the central
directory will further increase the bandwidth demand to the L2 cache. Alternatively,
an approach along the lines of cooperative caching schemes for CPUs [Chang and Sohi
2006, 2007; Herrero et al. 2008] may be used. Such schemes aim to minimize hop
latencies to find a sharer and retrieve data using a highly interconnected network of
L1 caches. However, since we have demonstrated that we have a considerable leeway of
around 80 cycles to fetch the shared data from a remote L1, such an aggressive scheme
to find a sharer is an overkill for GPUs.

Therefore, we propose a lightweight ring-based CCN. A ring topology is the lowest-
degree network and requires the fewest number of intercore connections. It is also
lowest in terms of logical complexity and power consumption, as all core-to-core con-
nections will be near-neighbor, and therefore the wires will be short. In addition, all
routers in a ring are simple multiplexers, which are more energy efficient than complex
crossbar routers. As we have shown that GPUs can tolerate reuse latencies gracefully
up to 80 cycles, a ring topology appears to be a cost-effective solution, as it allows us to
trade off higher latencies for simplicity and short wires (i.e., lower power consumption
and die-area cost).

4.2. Architecture

In our proposed scheme, we facilitate the communication between neighbors by con-
necting the private L1 caches in a ring via our CCN. The CCN is comprised of two
different channels: the request channel and response channel. The request channel
comprises a network of request queues (ReqQs), whereas the response channel com-
prises a network of response queues (RespQs). As shown in Figure 5, each L1 has an
independent pair of the aforementioned queues to allow the cache to participate in
cooperative caching. The L1 caches interact with their home queues via CCN buffers
(CBs), which hold the tag and Core-ID for the load misses, until the CCN is ready to

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

Cooperative Caching for GPUs 39:9

I L2 Bank I L2 Bank I L2 Bank

CBO J lr 777777777777 [""""""" CBZ

- - ‘
& —IENE- Hz £
..... Core-0 | | Core-1 |
‘ Request Channel Towards Corejs 3

Fllllllll——>Fllllllll——>Fllllllll'---—>

From Core 14 ReqQ-0 ReqQ-1 ReqQ-2

Response Channel -
—mmmeees EEEENEEE . EEEEEEEE T EEEEEEEEE

Towards Core 14 RespQ-0 RespQ-1 RespQ-2 From Core 3
Cooperative Caching Network

Fig. 5. Cooperative caching network.

accept a request. A new miss request, upon entering the local ReqQ, travels around the
request channel by hopping on other ReqQs and probing the different L1 caches on its
way. If a remote copy is found on one of the nodes, the response from the hit node is
sent back to the requesting core in a similar way by hopping in the reverse direction
via the RespQs at each core. Note that a remote L1 copy is considered for sharing only
if it is not pending on a cache fill for the requested data at the time of lookup. In other
words, pending hits due to outstanding miss requests are not considered for sharing in
the CCN.

Specifically, upon incurring a load miss for global data, instead of sending the miss
directly to L2, each core pushes the miss tag information into its CB along with the
Core-ID, where the request waits until the corresponding ReqQ is ready to accept a new
request. At every cycle, valid entries at the head of the ReqQ look up the corresponding
L1 cache (if it is not the home core of that request) before hopping onto the next ReqQ.
If the request travels back to the requesting core without a reuse copy, it is finally
sent to L2. However, if a sharer is found, the sharing core enqueues the response to
its Resp@Q. The response travels back to the requesting core, thereby avoiding an L2
access. If the ReqQs become full due to congestion, the CB eventually stops accepting
new miss requests. In such a scenario, the L1 load misses go directly to L2 until the
CCN can start accepting new requests again.

4.2.1. Prioritization Policy for Queues. Each queue in the CCN has a corresponding input
multiplexer to select one of the entries out of the two possible input sources. In the
request channel, an ReqQ can either accept a new miss request from the home core via
the CB or a forwarded request from a preceding ReqQ. In our proposal, we prioritize an
older request (from the ReqQ) over a new one (from the CB). This helps in preventing
oversubscription of the CCN to new L1 misses by allowing the previously accepted
requests to pass through and therefore minimize the round-trip overhead (8,verhead)
in the CCN for subscribed requests. Repeated unsuccessful attempts to inject a new
request in the CCN due to the preceding prioritization thus causes the CB to become
full and hence deflects the L1 misses directly to L2, allowing the CCN to recover from
congestion.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

39:10 S. Dublish et al.

In RespQs, however, we prioritize a new cache response (from the core) over an
older response (from the RespQ). This is because RespQ latencies do not contribute
to Sovernead but contribute to the reuse latencies /..., which has comparatively more
relaxed requirements (shown in Figure 4). More importantly, if the response of a new
remote hit is not accepted by the RespQ, the tag entry at the head of the corresponding
ReqQ that caused the hit is not popped, potentially stalling the entire request network
and increasing the ,,ereqq in the request channel.

4.2.2. CCN Memory Consistency. The CCN mechanism conforms to the existing mem-
ory consistency model supported by Fermi. CUDA provides two types of load instruc-
tions [NVIDIA 2016]: a normal load cached at 1.1 (Id.ca) and a direct load to L2 (/d.cg),
bypassing L1. Due to the write-through, no-write-allocate policy of the L1 cache, a write
causes the matching cache line in L1 to be invalidated, thereby causing the most re-
cent value to reside in L2. However, due to a weak memory model [Alglave et al. 2015;
NVIDIA 2014] and absence of coherence in GPUs, an ld.ca accessing L1 on a different
core can return a stale value. Litmus tests in Alglave et al. [2015] have also shown that
due to weak consistency, an Id.ca load may return a stale value on the same core as
well, even if preceded by an /d.cg to the same address (CoRR). The CCN adopts similar
weak memory ordering semantics for /d.ca loads; indeed, an 1.1 miss can return a stale
value by snooping other cores via the CCN instead of reading the L2 that may have
the latest value. However, since a baseline GPU guarantees reading the most recent
value for ld.cg loads, the CCN does not intercept such loads and hence does not further
weaken the memory model. In other words, when a programmer uses /d.cg loads to
bypass L1, the current memory model ensures that the most recently written value is
returned—a correctness guarantee also provided by the CCN.

4.3. Shadow Tags

Since each L1 now services additional tag lookups for CCN requests, such remote
lookups could affect the performance of local cache accesses. To eliminate the interfer-
ence of remote lookups on local requests, we duplicate the tags of the L1 data cache in
a separate set of shadow tags adjacent to each LL1. The shadow tags always contain an
identical copy of the L1 tags, which is achieved by always writing tag updates to both
sets of tags simultaneously. As a result, concurrent reads at independent addresses
can then take place to L1 tags and shadow tags from the local core and remote lookups,
respectively. Therefore, the shadow tags dissociate the performance of each local cache
from interference of CCN traffic. However, if a shadow tag lookup succeeds, then the
remote access makes a regular L1 access to retrieve the data it needs. This steals a
cycle from the L1 data cache, which is taken into account in our performance model.

Overhead. For the largest L1 data cache configuration of 48KB with 128-byte line
size, we require 24 upper address bits per tag, assuming 40-bit physical addresses
[NVIDIA 2009], plus one valid bit. Considering that the L1 data cache is four-way set
associative, the shadow tags are arranged as 96 sets of four 25-bit tags in 96x100
single-ported tag memory.

Way 0 Way 1 Way 2 Way 3
Vo | Tagol39:16] | Vi [Tagi[39:16] | V, | Tags[39:16] | V5 | Tags[39:16]

Therefore, the net storage overhead of the shadow tags is 1,200 bytes per SM and a
total of 17.5KB for a 15-core GPU that we consider in our study. However, each remote
access has to be checked in multiple shadow tags; these shadow tag memories are small
and can be constructed from low-leakage high-density bit cells without impacting the
overall cycle time of the ring interconnect.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

Cooperative Caching for GPUs 39:11

4.4. Request Throttler

In order to prevent those cores that do not exhibit any intercore reuse from congesting
the CCN, we introduce a request throttler (RT) at each core. The purpose of the RT
is to throttle the remote lookup requests directly to the L2 cache when prior routing
of misses to the CCN proves to be below a threshold level of effectiveness. To do this,
each RT periodically samples the CCN performance parameters and at the end of the
sampling period computes the success rate in routing its load misses to the CCN during
the sampling interval. The success rate is determined by the ratio of hits in the CCN
to the total number of requests injected in the CCN by the corresponding L1 cache. If
the success rate is below the threshold, the L1 cache bypasses the CCN until the next
sampling interval and performs the load miss by sending the request directly to the L.2
cache. However, the shadow tags of the throttled cores still participate in the lookup
for other requests in the CCN.

To illustrate the working of the RT further, we define the sampling interval as ¢g
and the periodicity of sampling as tp, where tg <« tp. Therefore, the entire period of
execution is logically divided into multiple epochs of duration ¢p. We also define H,,;,
as the minimum hit rate required in the CCN to derive utility out of cooperation.

At the beginning of an epoch of interval ¢p, each core begins by routing the load
misses to the CCN for a fixed sampling duration of 5. During the ¢g interval, the RT
collects the statistics about the number of requests injected in the CCN (N;ys;) and the
number of hits observed for its requests (V). At the end of the sampling duration, the
RT computes the hit rate (hyeus.) in the CCN (i.e., Areuse = Nhits/ Niotar)- If reuse >= Hpin,
the RT continues to inject requests in the CCN for the remaining duration of (¢p — ¢s5)
in the current epoch. On the other hand, if A,.use < H,in, the RT disables the routing of
requests to the CCN for the remaining duration of the epoch. After the current epoch
ends, Npirs and Ny are reset and the RT repeats the entire process again for the
new epoch. Therefore, with the help of the RT, we improve the average success rate of
sending a load miss to the CCN by preventing those cores from cooperating that are
not working on potentially reusable data during specific epochs of execution.

4.5. Working Example

In this section, we further illustrate the workings of the CCN. Figure 6 shows the flow
of requests within the CCN. In this example, Core-0 incurs a load miss for a global data
in its private L1 cache. In the baseline architecture, this L1 miss would be directly
routed to the L2 cache. However, with our scheme, the miss request can either go to the
CCN or to the L2 cache. The RT takes this decision for that particular core on the basis
of the statistics collected over the most recent sampling interval, 5. In this example,
we assume that A, for Core-0 and Core-1 suggests healthy reuse (>= H,;,), and
therefore these cores continue to use the CCN. However, Core-2 observes a low reuse
in the recent tg interval, thereby routing all requests directly to the L2 cache for the
current epoch.

Thus, to service the miss at Core-0 via the CCN, the tag and Core-ID of the load
request are pushed @ onto the corresponding CB, CB0. Based on the input prioriti-
zation policy for ReqQ, the new tag waits in CBO until it acquires the priority and is
accepted @ by ReqQ-0. Upon reaching the head of ReqQ-0, the miss request does not
perform a lookup in the shadow tag of Core-0, as it is the home core of the miss request
and therefore is directly passed to ReqQ-1 €. Upon reaching the head of ReqQ-1, it
performs a lookup @ in the shadow tag of Core-1. Assuming that it is a hit in Core-1,
the shadow tag receives the cache line from the corresponding L1 cache and enqueues
the response @ in RespQ-1, given that the RespQ-1 is not full. On the other hand,
if the RespQ-1 is full, the response is stalled, thereby preventing the tag at the head

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

39:12 S. Dublish et al.

I L2 Bank I L2 Bank I L2 Bank

- m s o E |
----- Core-0 Core-1
! Toward Core 3

oo !:llllllllirn—elﬁllllllll———_—el%llllllllnne
rom Core ReqQ-0 ReqQ-1 ReqQ-2

0%
- AEEEEEEE . © pumEEEEE ©C sEEEEEEE o

Toward Core 14 RespQ-0 RespQ-1 RespQ-2 From Core 3

Fig. 6. Workings of the CCN-RT.

of ReqQ-1 from getting popped. Once the response reaches the head of the queue at
RespQ-1 and acquires priority to enter the next queue, it is pushed into RespQ-0 @®.
Since Core-0 is the home core of the response, the new entry to RespQ-0 is bypassed to
the head of the queue and the response is serviced @ to the L1 cache of Core-0, hence
completing the request-response cycle.

5. EVALUATION

In this section, we discuss the implementation of our proposed architecture and demon-
strate the results.

5.1. Implementation

For the purpose of this study, we implement and evaluate two flavors of our proposed
architecture: the CCN-B and CCN-RT. The CCN-B is our baseline CCN architecture
that includes a pair of queues and shadow tags at every node of the network, whereas
in the CCN-RT we add the request throttling feature to the baseline CCN architecture.
Table II(b) summarizes the design parameters for the CCN-B and CCN-RT.

In our implementation, we choose the sampling interval and the periodicity of sam-
pling as 1 million and 10 million instructions, respectively. This is based on the observa-
tion that most benchmarks show a single-phase sharing across the entire application.
Hence, it allows us to sample for a short duration to get a fairly accurate hint for a
large duration that follows the sampling interval. Further, on the basis of our sensitiv-
ity studies, we select the threshold hit rate (H,;,) as 5% (i.e., the minimum number of
hits required to derive benefit from cooperative caching). We also observe in our exper-
iments that small eight-entry ReqQs and RespQs provide the most optimal results.

Furthermore, the request and response channels in the CCN are configured to flow
in opposite directions. This is because our experiments show that in such a case,
servicing reuse requests takes an average of 10 hops compared to a fixed 15 hops when
both channels propagate in the same direction.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

Cooperative Caching for GPUs 39:13

Table Il. Configuration Parameters for GPGPU-Sim and the CCN

‘ Parameter ‘ Value ‘
(a) GPGPU-Sim
Core 15 SMs, greedy-then-oldest (GTO) scheduler

Clock frequency Core @ 1.4GHz; Interconnect/L.2 @ 700MHz
Threads per SM 1,536

Warp width 32
SIMD lane width 32
Registers per SM 32,768
Shared memory 48KB

L1 data cache 16KB, 128-byte line, 4-way, LRU, write-through, no-write-allocate
L2 cache 768KB, 128-byte line, 8-way, LRU, write-back, 12 banks
DRAM GDDR5 DRAM, 6 channel, 64-bits per channel, 924MHz
(b) CCN

CCN buffer 8-entry, 30 bits per entry (26-bit tag + 4-bit Core-ID)
Request queue 8-entry, 30 bits per entry
Response queue 8-entry, ~128 bytes per entry (cache line + Core-ID)

CCN ring 4-byte request channel; 32-byte response channel; 1.4GHz
Shadow tag 1200 byte size (modeled on 48KB L1 data cache)
ts 1 million instructions
tp 10 million instructions
Hyin 0.05 (5% hits)

5.2. Experimental Setup

We model the CCN on GPGPU-Sim (version 3.2.2) [Bakhoda et al. 2009] to simulate
a Fermi-like GPU with the configuration parameters listed in Table II(a). For energy
and area simulations, we use GPUWattch [Leng et al. 2013], a McPAT-based power
model integrated in GPGPU-Sim. All CCN transactions have been modeled at cycle-
by-cycle accuracy in the simulator, which includes queuing delays in the request and
response channels, CCN congestion, and L1 cycle stealing by shadow tag accesses. We
run all benchmarks either to completion or until they execute 16 billion instructions,
whichever comes first.

5.3. Results

We begin by evaluating the overall performance improvement with our proposed
schemes for benchmarks that exhibit intercore reuse (uRC > 10). We also show the
neutrality of our scheme for benchmarks with little or no reuse (tRC < 3). Later we
assess the finer parameters for the former set of benchmarks, as applications with
intercore reuse are the primary motivation for this study. We do not show the bench-
marks between this range, as results of the preceding categories are good indicators of
the trend in the rest of the benchmarks. We also compare the results of our proposed
schemes (i.e., the CCN-B and CCN-RT) against an ideal cooperative caching config-
uration that services all of the remote hits with zero latency, without incurring any
overheads of cooperative caching.

5.3.1. Performance. In Figure 7(a), we show the speedup with the CCN-B and CCN-
RT for applications that exhibit reuse. Over the baseline configuration, we observe
an average improvement of 14.5% with the CCN-B and 14.7% with the CCN-RT.
Memory-bound applications such as c¢fd, ss, and pvr show higher speedup compared to
non-memory-bound applications, as they are more sensitive to bandwidth bottlenecks.
b+tree shows a higher improvement than the ideal case due to the timing variations
in scheduling warps. Such an aberration is also caused due to a higher number of

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

39:14 S. Dublish et al.

[baseline mmmmm CCN-B memsm CCN-RT ideal e [CCN-B_mm CCN-RT ideal me |
1.8 . 2
17 T o1
g 16 = o|® I e - | | - o A -
S s g 1 I
g 14 g 2
s 18 EE}_ 3
§ 1? E 4
= a 2 115
09 S % %, B b &, % %, b % 7 L
S, O b, by S % Qb f O S 4 9 S, % %, Th, 4 K & T %)
4&@ % Gf%o’zy xi%)o ‘/z% COC LG‘ '%// 2% K 0%& 9?@ ° o 7o
(a) Speedup for applications with tRC > 10 (b) Percentage improvement in IPC for applications

with uRC < 3

Fig. 7. Performance variation with cooperative caching.

coalesced hits on cache lines allocated for ongoing remote L1 accesses, which does not
occur in the ideal scenario due to zero cycle latency for remote L1 accesses.

We also assess the impact of cooperative caching on applications that show little or
no reuse. For such applications, cooperative caching adds an extra round-trip overhead
of going through the CCN, because due to a low uRC, most requests end up going to
the L2 cache after an unsuccessful traversal in the CCN. In such cases, the RT helps
in preventing the L1 misses from incurring the CCN overhead when there is little or
no reuse. In Figure 7(b), we show that with the CCN-B, we see a degradation of up to
11.5% and an average degradation of 1.7% compared to the baseline GPU. However,
with the CCN-RT, the maximum degradation reduces to 1.5% with an overall average
of 0.1%.

5.3.2. L2 Cache Bandwidth Demand. In Figure 8(a), we demonstrate the effectiveness of
our proposed technique in mitigating the L2 cache bandwidth bottleneck. On average,
the CCN-RT reduces the traffic to the L2 cache by 29% compared to the baseline GPU.
It is in close proximity to the ideal-case average of 33%, indicating that most of the
reuse hits on remote L1 caches are captured by the proposed architecture. Virtually
no difference between the CCN-B and CCN-RT demonstrates that although throttling
diverts most of the non-productive traffic directly to the L2 cache, it does not reduce
the number of potential hits in the CCN. If it would divert the useful reuse requests
to the L2 cache bypassing the CCN, then we would see a lesser reduction in L2 traffic
with the CCN-RT compared to the CCN-B.

5.3.3. Average Memory Latency. In Figure 8(b), we see an average reduction of 24% in
AML with our proposed CCN-RT architecture for applications that show reuse. We
observe that cutcp shows the maximum reduction of 65% in AML due to a high uRC
of 78%. However, it does not translate into performance gain due to its non—-memory-
bound nature.

5.3.4. Core Stall Cycles. We observed in the preceding results that the performance
improved by mitigating the bandwidth problem (indicated by L2 traffic) and by ser-
vicing the misses in less time (indicated by AML). This is because cores now spend
less time waiting for memory. Therefore, we assess the impact of our proposal on the
total number of cycles for which the cores are stalled. In Figure 8(c), we observe a sig-
nificant reduction in core stall cycles for memory-bound applications such as c¢fd and
sc, whereas no degradation is seen for non—-memory-bound applications like cutcp and
tpacf. On average, we reduce the core stall cycles by 26%, which is in close proximity
to the ideal reduction of 28%.

5.3.5. Off-Chip Memory Traffic. To dissociate the effects of L2 and off-chip bandwidths
on the overall performance gain, we analyze the change in off-chip memory traffic. As
shown in Figure 8(d), we see that for most applications, there is no visible difference in

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

Cooperative Caching for GPUs 39:15

CCN-B_mwm CCN-RT ideal me— [baseline mm— CCN-B_ CCN-RT
80 12

(%)

40

70

60

50

30 I|

i1 1l

10 nen mull Ill I
6)(’/ % /)% %, 4,)) o, S

S o

AML (normalized)

Reduction in L1 to L2 traffic

0.4

T

e/ 0
@

/(y %OL % o%o ’0‘90, % % 6)(% % 60’% /%' %OL Y o,,’% 4;@0, @} o, S 4 «7%‘
” © 0 7
(a) Percentage reduction in L1 to L2 traffic (b) Normalized AML
[baseline mmmm CCN-B mmmsm CCN-RT ideal mem | = [baseline mmmmm CCN-B mmmsm CCN-RT ideal mm—
3 o
% 1.? E 12
£ 2 1
g 0.8 Qo
8 06 g 4
Q >
S 04 S
= 5 o9
® 0.2 E
® o
3 0 G A bl S S O b A O S 4 -50'8604/«-u~o/+o¢4,~7
5 % . %, = %, ., 2,
5&@ e 0@00,0 ‘90770 %»‘O Yo K o © LO o x%& © O(FOO,O QO'P; ° 0’9‘0 %or ke - ¢ bo
(c) Normalized core stall cycles (d) Normalized off-chip memory traffic
[baseline s CCN-RT]
1.12
5 1.08
8
5 1.04
E 1
5
£ 096
]
é 0.92
w 0.88
084 b, 0 B 4 S S Q. B B O S b A,
Y %, T e N R T

(e) Energy dissipation with the CCN

Fig. 8. Experimental results demonstrating the effect of cooperative caching.

the traffic to off-chip memory, indicating that the entire performance improvement can
be attributed to the mitigation of the bandwidth bottleneck between private L1s and
the shared L2. Therefore, it can be inferred for most benchmarks that in the baseline
architecture without the CCN, the reuse requests mostly hit in the L2 cache, thereby
only burdening the L2 cache bandwidth with duplicate requests. However, in sc, we
notice a reduction in DRAM traffic by 12% with the CCN-RT. This indicates that for
sc, a significant portion of reuse requests to L2 also misses in the L2 cache, adding to
the DRAM traffic. As a result, upon removing the reuse requests to the L2 cache with
the help of the CCN in sc, not only the traffic to the L2 cache is reduced but also the
traffic to DRAM is reduced. Therefore, the performance benefit in sc with the CCN-RT
can be attributed not only to the mitigation of the L2 bandwidth bottleneck but also to
the mitigation of the DRAM bandwidth bottleneck.

5.3.6. Summary. In the preceding results, we observed that for applications exhibiting
reuse, we are able to reduce the traffic to the L2 cache by 29% while also reducing the
average memory latency by 24%. As a consequence of the preceding improvements,
we reduce the average core stall cycles by 26%, which translates into an average
performance improvement of 14.7%.

5.4. Hardware Costs

5.4.1. Area. We use GPUWattch [Leng et al. 2013] to estimate the area of our pro-
posed architecture. We use the existing components in GPUWattch to model the CCN

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

39:16 S. Dublish et al.

[baseline-16/48 CCN-16L1 CCN-48L1 mmmmm [baseline mmmmm one-cycle === Three-cycles Five-cycles mmmm
1.7 1.5

I

g

£

8 g

3 o

é‘, 1.4 3

e 13 S

=

g 1.2 i 1.1

T o1 I 4 ,

5 1

g AN NN IIIIIIIII il al s 09

© T8 Y S Bty 4, T b, Yy S b, b 0 4,
(a) Speedup with varying L1 cache sizes (b) Speedup with link latencies of one, three, and

five cycles

[baseline = ccn-32 mm ccn-64 ccn-128 == con-192

IPC (normalized to resp. baselines)
S

A N

6, Q4 %, S, & < %.
o, %, o %
%, %]

S 0 b %,
@@ 0 lz, el o

(c) Speedup with varying width of SIMD lanes

Fig. 9. Sensitivity analysis.

components after appropriate scaling wherever necessary. The CCN adds an area over-
head of 4.38mm? for the ring interconnect and the shadow tags (corresponding to the
largest L1 data cache configuration) at 40nm technology. Other storage units, such as
CBs and ReqQs and RespQs, add another 4.82mm?. This amounts to an overall increase
in die area by 1.3% with respect to a baseline processor architecture area of 700mm?.

5.4.2. Energy. With the CCN, cores are stalled for fewer cycles, thereby reducing the
leakage power. In addition, fewer packets require routing at the energy-inefficient
crossbar routers. In addition, lower traffic to L2 leads to lower energy consumption by
the NoC. However, high shadow tag lookups for remote cache accesses normalize other
energy gains of the CCN, resulting in an average energy overhead of 2.5% (Figure 8(e)).

5.5. Sensitivity Analysis

5.5.1. L1 Cache Size. As Fermi offers configurable L1 cache sizes of 16KB and 48KB,
we analyze the sensitivity of our proposal to the L1 cache size. As shown in Figure 9(a),
on increasing the L1 cache size to 48KB, we observe an average IPC gain of 20.6%
with the CCN compared to 14.7% with the CCN on 16KB L1 (over their respective
baselines). This is due to the following reason. Although increasing the L1 cache size
reduces the number of capacity/conflict misses, thereby reducing the opportunities to
find remote L1 hits in the CCN, we observe that a larger L1 significantly increases
the likelihood of finding a remote L1 sharer for a compulsory miss. Therefore, due to
significant increase in utility of the CCN for compulsory misses on increasing the L1
size (which dominates the decrease in utility of the CCN due to lower conflict/capacity
misses), we observe a higher improvement in performance with larger L1s.

5.5.2. Link Latency and Frequency. In this study, we analyze the performance impact of
interconnect latencies for every hop on the CCN ring. This is done by varying the core-
to-core transfer latency from 1 to 5 cycles (i.e., 15 to 75 cycles for the entire ring). For
a 700mm? chip, each hop is approximately 3.5mm of on-chip distance, and therefore
1 to 5 cycles at 1.4GHz is a reasonable window to complete the transfer [Beckmann
and Wood 2004]. It is worth noting that varying the CCN link latency also captures
the effect of running the CCN ring at a fraction of core frequency. Therefore, this study

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

Cooperative Caching for GPUs 39:17

shows the performance variation on using the CCN ring at up to one-fifth of the core
frequency (280MHz).

In Figure 9(b), we see that for most applications, the IPC gain is fairly resilient
to increasing link latencies (or decreasing ring frequencies). For instance, c¢fd shows a
marginal reduction of 1% when the latency increases from one to five cycles. A minority
of applications show visible reductions in the gain as link latency increases. For exam-
ple, the IPC gain of b+tree drops from 31% to 19%, although it still maintains a modest
overall improvement in performance. On average, we see IPC improvements drop from
14.7% to 13.6% as latency is increased from one to three cycles, settling further at
11.2% when the link latency is increased to five cycles. These results indicate that our
proposed scheme is fairly robust to increasing inefficiencies in the ring interconnect
(as well as increasing distance between the neighboring cores).

5.5.3. SIMD Lane Width. Each core in NVIDIA’s Fermi GPU consists of a 32-lane SIMD
unit, with each lane capable of executing one floating point or arithmetic instruction
per clock. In this study, we analyze the utility of the CCN on increasing the SIMD
lane width. In Figure 9(c), we plot the performance gain with the CCN-RT on baseline
configuration with varying SIMD lane widths of 32 (ccn-32), 64 (ccn-64), 128 (cen-
128), and 192 (ccn-192), each normalized to their respective baselines. On average, the
performance gain drops modestly from 14.7% to 13.6% on increasing the SIMD lane
width from 32 to 64, settling further at 11.4% and 10.2% with SIMD lane widths of
128 and 192, respectively. Although the minor reduction in CCN gain is due to the
increased latency tolerance provided by additional SIMD lanes, cooperative caching
continues to provide considerable benefits for memory-intensive applications. This is
due to the fact that by increasing the SIMD lanes or the compute capability of the
cores, only compute-bound applications are expected to show significant speedups and
a higher overlap of memory latencies with computation. In contrast, memory-intensive
applications lack independent compute instructions and continue to be bottlenecked
by memory resources. Therefore, additional compute resources for memory-intensive
applications provides only limited additional latency tolerance to the cores due to which
cooperative caching continues to be useful in reducing memory latencies that lie in the
critical path. However, some benchmarks, such as lud and km, also show momentary
improvement in performance gain with the CCN on increasing the SIMD lane width.
We observe that this is because with wider SIMD lanes, a higher number of threads
arrive at the memory instructions per cycle, issuing a higher number of requests that
may exhibit reuse, thereby amplifying the utility of the CCN in reducing the traffic
that could lead to even higher congestion.

5.6. Discussion

In the future, scalability of the CCN can be addressed by a hierarchical implementation
of the proposed ring network [Holliday and Stumm 1994; Ravindran and Stumm 1997].
A sub-CCN ring that contains the requesting core can inquire other sub-CCN rings in
parallel, thereby decomposing the serial latency of traversing the high number of cores
into concurrent transactions to multiple rings. In addition, as coherent caches in GPUs
are imminent in future architectures [Martin et al. 2012; Power et al. 2013; Singh
et al. 2013], intercore communication via the CCN can also act as a substrate for
implementing cache coherence.

6. COMPARATIVE STUDY

In this section, we perform a quantitative and qualitative comparison of the CCN with
alternative techniques that address the bandwidth bottleneck in GPUs.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

39:18 S. Dublish et al.

[banki2 mem banked e banki2/CCN DanKeA/CON [baseline mmmmm " cluster03 mmmm cluster05 GCON o |
17 15
16 14

1.73

13
. 1.2
R 11
1 1
0.9 0.9
%,

(a) Speedup with 2x L2 banks and the CCN (b) Ideal speedup with L1 cache clusters

IPC (normalized)
@
IPC (normalized)

Fig. 10. Comparative study.

6.1. Increasing L2 Banks

An alternative technique to increase the bandwidth to L2 is to increase the number of
L2 banks. However, increasing the banks only reduces the congestion in the access path
to L2, whereas the CCN, in addition to reducing pressure on L2 bandwidth, provides
a significantly faster response for a fraction of miss requests. In our experiments, we
observe that the CCN services the reuse requests in 42 cycles (/,..s) on average, for
29% misses (Ay¢use) that hit in the CCN. For the remaining L2 accesses, the CCN adds
a round-trip overhead of 54 cycles (8,perneaq)- It also reduces the congestion overhead to
L2 by 78 cycles (8cong). Considering that the average L2 access latency without the CCN
is 300 cycles (/o) and substituting the preceding values in Equation (1), the average L2
access latency with the CCN is computed to be 208 cycles (Equation (3)).

lecon) = (300 — 78 + 54) x 0.71 + (42) x 0.29 = 208 3)
lox) = (300 — 80 + 0) x 1.0 = 220 (4)
lowcenzx = (300 — 117 + 54) x 0.71 + (42) x 0.29 = 180 (5)

However, increasing the L2 banks only reduces 8., (although marginally more
than the CCN for some benchmarks) but requires all accesses to go through the L2
access latency, albeit via reduced congestion. Upon substituting corresponding values in
Equation (1), the reduced L2 access latency is computed to be 220 cycles (Equation (4)).
Therefore, in Figure 10(a), we observe an average IPC improvement of 10.2% upon
a 2x increase in L2 banks from 12 to 24. In contrast, the CCN implemented with a
12-bank L2 configuration shows a higher improvement of 14.7% (with cfd performing
34% better with the CCN than with 2x L2 banks).

Importantly, the CCN is partly orthogonal to increasing the banks at L2. This is
because, in addition to reducing the 8., further, the CCN adds the benefit of faster
access to reuse requests. The average L2 access latency in Equation (1) for a CCN
architecture on a 24 L.2 bank configuration is computed to be 180 cycles (Equation (5)).
In Figure 10(a), our experiments show an average performance improvement of 23.5%
with both techniques combined.

With respect to the cost, increasing the L2 banks would require a higher number of
ports in the crossbar. As the area of a crossbar increases polynomially on increasing the
ports, the area overhead will be significant. Energy demands also increase significantly,
as each router is more complex and needs to arbitrate on a higher number of nodes.
In contrast, the CCN only requires simple multiplexers at each router and scales well
with respect to area and energy overheads. Alternatively, increasing the L2 datapath
width to provide more L2 bandwidth would also be area intensive, as it entails
increasing the area of 15 x 12 core-to-L2 connections in the crossbar, making the
crossbar much bulkier. However, the CCN only requires 15 core-to-core connections.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

Cooperative Caching for GPUs 39:19

As core-to-L2 connections are typically longer (in addition to being higher) than
core-to-core connections in the CCN, there is a higher overhead in scaling the former.

6.2. Sharing Tracker

Tarjan and Skadron [2010] proposed a scheme to exploit reuse within the private caches
by using a sharing tracker, a decomposed version of the coherence directory. It aims to
reduce the off-chip memory bandwidth demand by diverting DRAM accesses to private
caches that contain a shared copy.

Although we adopt this intuition to reuse shared copies in private caches, our aim
is to reduce the bandwidth demand to the shared cache (and not the DRAM as in
Tarjan and Skadron [2010]). This is because in the current scenario with recent GPU
architectures, exploiting reuse does not reduce off-chip memory traffic (as shown in
Figure 8(d)), and hence a common directory in the shared cache is not expected to show
any benefit since there are not many off-chip memory accesses that it can avoid. In
fact, since accessing and maintaining the sharing tracker in the L2 cache adds to the
bandwidth demand to L2 without relieving pressure on off-chip bandwidth, it will only
exacerbate the problem by increasing the L2 access latencies and thereby worsen the
IPC with respect to baseline. For those architectures where off-chip memory traffic is
also reduced by exploiting sharing within private caches, the CCN achieves the same
but also reduces the traffic to L2 (which we have shown to be critical to performance),
therefore providing a significant advantage over a directory approach.

6.3. Clustered Sharing

Keshtegar et al. [2015] proposed an architecture to enable restricted sharing within
core clusters. However, in Figure 3, we showed that whereas some benchmarks show
higher reuse with neighboring cores, others show a uniform sharing with all cores. In
Figure 10(b), we show the ideal performance improvement (with no sharing overheads)
obtained by sharing within cache clusters and compare it to an ideal case of the CCN
(sharing among all cores). We observe an average IPC gain of 4% and 8% with ideal
clusters of three and five L1s, respectively, compared to an average IPC gain of 21%
with the ideal CCN. This suggests that for most benchmarks, upon restricting the
sharing within cache clusters, SMs lose out on most of the reuse data.

Moreover, the cluster-based proposal by Keshtegar et al. [2015] employs a mesh-type
network within a cluster and scales polynomially with the number of cores. Therefore,
we expect the area overhead of clusters to exceed the area of ring-based connections
in the CCN, which scales linearly with the number of cores. Furthermore, in current
GPUs, SMs are placed linearly around the central L2 cache [NVIDIA 2009, 2012], and
therefore clusters would require longer wires to connect the far ends of a cluster as
compared to only near-neighbor connections in the CCN.

6.4. Summary

In this section, we have shown that the CCN fares well compared to alternative tech-
niques. The CCN performs better than simply increasing the number of L2 banks while
also being partly orthogonal to the latter technique. The sharing tracker is expected
to show a negative performance gain with the baseline architecture, and restricted
sharing within cache clusters significantly reduces intercore reuse.

7. RELATED WORK

Although sharing across L1 caches is a common occurrence in multiprocessors, as em-
phasized by the prevalent use of a sophisticated coherence infrastructure, we derive
significant benefits by exploiting .1 sharing for GPGPU workloads, a property atypical
in GPUs. Additionally, in contrast to earlier works [Yazdanbakhsh et al. 2016; Jog et al.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

39:20 S. Dublish et al.

2016] where only the off-chip memory bandwidth is considered critical to performance,
we identify the criticality of mitigating congestion in the on-chip cache hierarchy be-
tween the L1 and L2 cache. In the following sections, we further discuss several prior
works related to the ideas presented in the CCN and cite their key differences.

7.1. Cooperative Caching in CMPs

In the realm of CMPs, Chang and Sohi [2006, 2007] proposed cooperative caching by
adapting the coherence infrastructure. Subsequently, Herrero et al. [2008] proposed a
scalable distributed cooperative caching scheme by redesigning the coherence engine
to provide distributed directories. Both schemes aim to provide aggressive latency and
capacity benefits for on-chip caches in CMPs. However, since GPUs are relatively more
tolerant to latencies, in this article we address the problem of bandwidth in GPUs.
In addition, a directory-based scheme is not directly portable to GPUs due to the
lack of coherence infrastructure, and therefore our solution proposes an independent
lightweight network.

7.2. Ring Network

Ring topologies have been used extensively in commercial multiprocessors to provide
low-cost intercore communication. Larrabee [Seiler et al. 2008] employs a bidirectional
ring network to allow on-chip communication between latency-sensitive CPU cores, co-
herent L2 caches, and other blocks, with each link being 64 bytes wide (net width of
128 bytes). The Xeon Phi [Chrysos 2012] also contains bidirectional rings, with each
ring composed of three independent rings: a 64-byte data block ring for data transac-
tions, an address/command ring, and an acknowledgement ring for coherence and flow
control messages (net width >128 bytes). In contrast, the CCN enables bidirectional
communication between latency-tolerant GPU cores by connecting the incoherent L1
caches in a ring. Due to relaxed latency constraints in the CCN compared to prior
ring interconnects in multiprocessors, the bus width for intercore transfers is smaller,
with each link being 8 bytes and 32 bytes wide, respectively (net width of 40 bytes).
Therefore, our proposal exploits the latency-tolerance property of multithreaded cores
to provide low-cost intercore communication through a lightweight ring network.

Furthermore, Campanoni et al. [2014] proposed a ring cache for HELIX-RC that acts
as a distributed first-level cache, preceding the private L1 cache. Each ring node has
a cache array to cache shared data and satisfies the loads and stores received from its
attached core. To avoid coherence complications, memory addresses are permanently
mapped to the nodes of the ring cache. In contrast, each node in the CCN ring network
includes a shadow tag array, needed only for lookups and not for storage of shared
data. Subsequent loads to the shared data via the CCN are performed directly in
the corresponding L1 caches, as there is no separate data array for the ring nodes.
Therefore, the nodes in the CCN ring network are lighter than nodes in the ring cache
proposed in HELIX-RC.

7.3. Shadow Tags

Prior proposals such as Piranha [Barroso et al. 2000] and Niagara [Kongetira et al.
2005] have replicated tag structures of the private L1 caches at the shared L2 cache.
Such duplicate L1 tags stored centrally in the L2 cache are typically used to construct
partial sharing information, thereby reducing indirections to the coherence engine.
Duplicate tag structures are also used to reduce redundant write-back traffic to the L2
cache from multiple L1s that cache the same shared data. However, in the CCN, we
replicate the tags adjacent to the corresponding .1 caches and do not complicate the L2
cache control. It is used only to prevent deterioration of L1 cache performance due to

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

Cooperative Caching for GPUs 39:21

remote lookups. Moreover, tag updates to shadow tags incur minimum communication
overhead in the CCN due to physical proximity of L1 caches and shadow tags.

7.4. Cache Management

In the field of GPUs, prior proposals such as the sharing tracker [Tarjan and Skadron
2010] and cluster-based schemes [Keshtegar et al. 2015] (discussed previously in Sec-
tion 6) exploit reuse within GPU cores via central directory and clustered caches,
respectively.

Several other schemes have been proposed for GPUs to improve the effective on-chip
cache capacity, reduce cache thrashing, and improve locality in .1 and L2 caches. Rhu
et al. [2013] proposed a locality-aware memory hierarchy that adaptively adjusts the
memory access granularity to prevent overfetching, providing better off-chip bandwidth
utilization. Furthermore, with regard to adaptive memory access granularity, Li et al.
[2016] proposed a tag-split cache to enable fine storage granularity to improve cache
utilization while keeping a coarse access granularity to avoid excessive cache requests.
Tarjan et al. [2009] proposed a scheme to tolerate memory miss latencies for SIMD cores
by masking out threads in a warp that are waiting on data and allowing other threads
to continue execution, hence utilizing the idle execution slots. Rogers et al. [2012, 2013]
proposed scheduling techniques that are conscious of the variations in the cache locality,
thereby dynamically altering the scheduling policies to maximize inter-warp locality on
the L1 data cache. Jia et al. [2012] presented a taxonomy for memory access locality and
proposed a compile-time algorithm to selectively utilize the L1 caches. Narasiman et al.
[2011] proposed large warp architecture and a two-level warp scheduling technique to
make effective use of resources on GPU, whereas Jog et al. [2013] proposed a thread
block—aware scheduling policy to improve the cache hit rates of the L1 cache. Choi
et al. [2012] employed techniques such as write buffering and read bypassing to reduce
DRAM traffic and improve the L2 cache utilization, thereby addressing the bandwidth
constraint between shared memory and DRAM. There has also been work on cache
management policies for heterogeneous CPU-GPU architectures. Yang et al. [2012]
proposed a CPU-assisted prefetching scheme to improve GPU memory latencies by
localizing the data in the LLC cache, whereas Lee and Kim [2012] proposed a TLP-
aware cache management policy to effectively utilize the LLC for general-purpose
workloads.

Broadly, the preceding cache management proposals focus on reducing the miss rate
of independent caches by improving cache utilization. However, in the CCN, without
reducing miss rate of independent L1s, we reduce the collective bandwidth demand
of L1 on L2 by diverting some of the misses to remote L1s. Hence, the mentioned
techniques that reduce the miss rate itself are orthogonal to our work. Given the
severity of the memory bottleneck in GPUs (as indicated by the magnitude of PerfX
in Table I), no technique alone solves the entire problem, and hence such orthogonal
techniques can be used in conjunction with the CCN.

7.5. Cache Bypassing

To mitigate the severity of cache thrashing, several cache bypassing techniques have
been proposed. In CPUs, Gaur et al. [2011] proposed a bypass policy to selectively fill
the exclusive LLC with evicted cache blocks from the higher level. Further, Duong
et al. [2012] proposed a policy to protect reusable cache lines from eviction with a
dynamically computed protected distance and bypass the miss requests upon lack of
unprotected cache lines in a set.

In GPUs, high multithreading and low on-chip cache capacity per thread present
additional challenges due to severe cache thrashing. Chen et al. [2014] proposed a
dynamic cache management policy that combines L1 cache bypassing and throttling.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

39:22 S. Dublish et al.

In their proposed scheme, warp throttling prevents oversaturation of on-chip cache re-
sources, whereas cache bypassing prevents cache contention, requiring a lower number
of warps to be throttled in comparison to stand-alone warp throttling schemes. Li et al.
[2015] proposed a locality-driven cache bypassing scheme that uses reuse frequency in
a decoupled and extended tag memory to allow allocation in the data memory for only
those cache lines that exhibit high reuse.

In summary, the cache bypassing schemes in the GPU improve cache utilization by
preserving hot cache lines with high reuse in the the available on-chip caches and
bypassing the streaming requests directly to the L2 cache. By preventing eviction of
cache lines with high reuse, it helps in eliminating repeated reuse requests from the
same L1 cache to the L2 cache. However, in our proposed technique, we eliminate
the reuse requests from different L1 caches to the L2 cache. In other words, cache
bypassing techniques reduce intracore reuse requests that access the L2 cache, whereas
our proposed technique reduces intercore reuse requests that access the L2 cache.
Therefore, we expect our proposal to be complementary to cache bypassing techniques,
as both techniques help in reducing a mutually exclusive set of requests to the L2
cache.

8. CONCLUSION

In this article, we discuss the inefficiencies in the management of L1 caches in GPUs.
We show that as a consequence of high L1 miss rates, high traffic to the L2 cache
presents a bandwidth bottleneck between L1 and L2, resulting in high L2 access la-
tencies. In memory-intensive applications, multithreading is unable to hide such high
latencies, making it critical to performance.

We discover considerable potential for data reuse within the L1 caches. We exploit
this opportunity to reduce the miss traffic to the L2 cache and thereby reduce the
L2 cache bandwidth demand. Therefore, we present a CCN that services the L1 load
misses cooperatively via a lightweight ring network. We show that GPUs can tolerate
reuse latencies gracefully up to 80 cycles, and therefore a ring topology appears to be
a cost-effective solution, as it allows us to trade off higher latencies for simplicity and
short wires (i.e., lower power consumption and die-area cost). We also use shadow tag
memory, adjacent to each L1 data cache, to decouple the local L1 cache performance
from remote L1 cache tag lookups. For applications that do not exhibit any intercore
reuse, we detect the lack of sharing at runtime and prevent the LL1 miss requests from
incurring the CCN overhead, sending them directly to the L.2 cache. For applications
that exhibit reuse, our technique improves the IPC by 14.7% but is neutral to applica-
tions that show little or no reuse. We likewise reduce the traffic to the L2 cache by 29%
and reduce the AML by 24%. As a result, we reduce the total core stall cycles by 26%.
Alongside the preceding improvements, the CCN presents an area and energy over-
head of 1.3% and 2.5%, respectively. The CCN also compares favorably to alternative
techniques that address the bandwidth issue.

REFERENCES

Manuel E. Acacio, José Gonzalez, José M. Garcia, and José Duato. 2002. Owner prediction for accelerating
cache-to-cache transfer misses in a cc-NUMA architecture. In Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing (SC’02). IEEE, Los Alamitos, CA, 1-12. http:/dl.acm.org/citation.
cfm?id=762761.762762

Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema, Daniel Poetzl,
Tyler Sorensen, and John Wickerson. 2015. GPU concurrency: Weak behaviours and programming
assumptions. In Proceedings of the 20th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS’15). ACM, New York, NY, 577-591. DOI:http:/dx.
doi.org/10.1145/2694344.2694391

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

http://dl.acm.org/citation.cfm?id=762761.762762
http://dl.acm.org/citation.cfm?id=762761.762762
http://dx.doi.org/10.1145/2694344.2694391
http://dx.doi.org/10.1145/2694344.2694391

Cooperative Caching for GPUs 39:23

Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M. Aamodt. 2009. Analyzing CUDA
workloads using a detailed GPU simulator. In Proceedings of the 2009 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS’09). IEEE, Los Alamitos, CA, 163—
174.

L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets, and B.
Verghese. 2000. Piranha: A scalable architecture based on single-chip multiprocessing. In Proceedings
of the 27th International Symposium on Computer Architecture. 282—293.

Bradford M. Beckmann and David A. Wood. 2004. Managing wire delay in large chip-multiprocessor caches.
In Proceedings of the 37th Annual IEEE | ACM International Symposium on Microarchitecture (MICRO-
37). IEEE, Los Alamitos, CA, 319-330. DOI:http://dx.doi.org/10.1109/MICRO.2004.21

Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones, Gu-Yeon Wei, and David Brooks. 2014.
HELIX-RC: An architecture-compiler co-design for automatic parallelization of irregular programs. In
Proceeding of the 41st Annual International Symposium on Computer Architecture (ISCA’14). IEEE, Los
Alamitos, CA, 217-228. http://dl.acm.org/citation.cfm?id=2665671.2665705

Jichuan Chang and Gurindar S. Sohi. 2006. Cooperative caching for chip multiprocessors. In Proceedings
of the 33rd Annual International Symposium on Computer Architecture (ISCA06). IEEE, Los Alamitos,
CA, 264-276. DOI : http://dx.doi.org/10.1109/ISCA.2006.17

Jichuan Chang and Gurindar S. Sohi. 2007. Cooperative cache partitioning for chip multiprocessors. In
Proceedings of the 21st Annual International Conference on Supercomputing (ICS’07). ACM, New York,
NY, 242-252. DOI : http://dx.doi.org/10.1145/1274971.1275005

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin
Skadron. 2009. Rodinia: A benchmark suite for heterogeneous computing. In Proceedings of the 2009
IEEE International Symposium on Workload Characterization (IISWC’09). IEEE, Los Alamitos, CA,
44-54. DOI : http://dx.doi.org/10.1109/IISWC.2009.5306797

Xuhao Chen, Li-Wen Chang, Christopher I. Rodrigues, Jie Lv, Zhiying Wang, and Wen-Mei Hwu. 2014.
Adaptive cache management for energy-efficient GPU computing. In Proceedings of the 47th Annual
IEEE | ACM International Symposium on Microarchitecture (MICRO-47). IEEE, Los Alamitos, CA, 343—
355. DOI: http://dx.doi.org/10.1109/MICRO.2014.11

Hyojin Choi, Jaewoo Ahn, and Wonyong Sung. 2012. Reducing off-chip memory traffic by selective cache
management scheme in GPGPUs. In Proceedings of the 5th Annual Workshop on General Purpose
Processing with Graphics Processing Units (GPGPU-5). ACM, New York, NY, 110-119. DOI:http:/
dx.doi.org/10.1145/2159430.2159443

George Chrysos. 2012. Intel Xeon Phi Coprocessor—The Architecture. Technical Report. Intel Corporation.
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner.

Saumay Dublish, Vijay Nagarajan, and Nigel Topham. 2016. Characterizing memory bottlenecks in GPGPU
workloads. In Proceedings of the 2016 IEEE International Symposium on Workload Characterization
(IISWC’16).

Nam Duong, Dali Zhao, Taesu Kim, Rosario Cammarota, Mateo Valero, and Alexander V. Veidenbaum. 2012.
Improving cache management policies using dynamic reuse distances. In Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-45). IEEE, Los Alamitos,
CA, 389-400. DOI : http://dx.doi.org/10.1109/MICRO.2012.43

Jayesh Gaur, Mainak Chaudhuri, and Sreenivas Subramoney. 2011. Bypass and insertion algorithms for
exclusive last-level caches. In Proceedings of the 38th Annual International Symposium on Computer
Architecture (ISCA’11). ACM, New York, NY, 81-92. DOI : http://dx.doi.org/10.1145/2000064.2000075

Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and Tuyong Wang. 2008. Mars: A MapReduce
framework on graphics processors. In Proceedings of the 17th International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT'08). ACM, New York, NY, 260—-269. DOI : http://dx.doi.org/
10.1145/1454115.1454152

Enric Herrero, José Gonzalez, and Ramon Canal. 2008. Distributed cooperative caching. In Proceedings of the
17th International Conference on Parallel Architectures and Compilation Techniques (PACT'08). ACM,
New York, NY, 134-143. DOI :http://dx.doi.org/10.1145/1454115.1454136

Mark A. Holliday and Michael Stumm. 1994. Performance evaluation of hierarchical ring-based shared
memory multiprocessors. IEEE Transactions on Computers 43, 1, 52—67.

Wenhao Jia, Kelly A. Shaw, and Margaret Martonosi. 2012. Characterizing and improving the use of demand-
fetched caches in GPUs. In Proceedings of the 26th ACM International Conference on Supercomputing
(ICS’12). ACM, New York, NY, 15-24. DOI: http://dx.doi.org/10.1145/2304576.2304582

Adwait Jog, Onur Kayiran, Nachiappan Chidambaram Nachiappan, Asit K. Mishra, Mahmut T. Kandemir,
Onur Mutlu, Ravishankar Iyer, and Chita R. Das. 2013. OWL: Cooperative thread array aware schedul-
ing techniques for improving GPGPU performance. In Proceedings of the 18th International Conference

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

http://dx.doi.org/10.1109/MICRO.2004.21
http://dl.acm.org/citation.cfm?id$=$2665671.2665705
http://dx.doi.org/10.1109/ISCA.2006.17
http://dx.doi.org/10.1145/1274971.1275005
http://dx.doi.org/10.1109/IISWC.2009.5306797
http://dx.doi.org/10.1109/MICRO.2014.11
http://dx.doi.org/10.1145/2159430.2159443
http://dx.doi.org/10.1145/2159430.2159443
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://dx.doi.org/10.1109/MICRO.2012.43
http://dx.doi.org/10.1145/2000064.2000075
http://dx.doi.org/10.1145/1454115.1454152
http://dx.doi.org/10.1145/1454115.1454152
http://dx.doi.org/10.1145/1454115.1454136
http://dx.doi.org/10.1145/2304576.2304582

39:24 S. Dublish et al.

on Architectural Support for Programming Languages and Operating Systems (ASPLOS’13). ACM, New
York, NY, 395-406. DOI : http://dx.doi.org/10.1145/2451116.2451158

Adwait Jog, Onur Kayiran, Ashutosh Pattnaik, Mahmut T. Kandemir, Onur Mutlu, Ravishankar Iyer, and
Chita R. Das. 2016. Exploiting core criticality for enhanced GPU performance. In Proceedings of the
2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science.
351-363. DOI: http:/dx.doi.org/10.1145/2896377.2901468

Stefanos Kaxiras and Georgios Keramidas. 2010. SARC coherence: Scaling directory cache coherence in
performance and power. IEEE Micro 30, 5, 54—65. DOI : http://dx.doi.org/10.1109/MM.2010.82

Mohammad Mahdi Keshtegar, Hajar Falahati, and Shaahin Hessabi. 2015. Cluster-based approach for
improving graphics processing unit performance by inter streaming multiprocessors locality. IET Com-
puters and Digital Techniques 9, 5, 275-282. http://digital-library.theiet.org/content/journals/10.1049/
iet-cdt.2014.0092.

P. Kongetira, K. Aingaran, and K. Olukotun. 2005. Niagara: A 32-way multithreaded sparc processor. IEEE
Micro 25, 2, 21-29. DOI : http://dx.doi.org/10.1109/MM.2005.35

Alvin R. Lebeck and David A. Wood. 1995. Dynamic self-invalidation: Reducing coherence overhead in shared-
memory multiprocessors. In Proceedings of the 22nd Annual International Symposium on Computer
Architecture (ISCA95). ACM, New York, NY, 48-59. DOI: http://dx.doi.org/10.1145/223982.223995

Jaekyu Lee and Hyesoon Kim. 2012. TAP: A TLP-aware cache management policy for a CPU-GPU het-
erogeneous architecture. In Proceedings of the 2012 IEEE 18th International Symposium on High
Performance Computer Architecture (HPCA'12). IEEE, Los Alamitos, CA, 1-12. DOI:http:/dx.doi.org/
10.1109/HPCA.2012.6168947

Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim, Tor M. Aamodt, and
Vijay Janapa Reddi. 2013. GPUWattch: Enabling energy optimizations in GPGPUs. In Proceedings of
the 40th Annual International Symposium on Computer Architecture (ISCA’13). ACM, New York, NY,
487-498. DOI : http://dx.doi.org/10.1145/2485922.2485964

Chao Li, Shuaiwen Leon Song, Hongwen Dai, Albert Sidelnik, Siva Kumar Sastry Hari, and Huiyang
Zhou. 2015. Locality-driven dynamic GPU cache bypassing. In Proceedings of the 29th ACM Inter-
national Conference on Supercomputing (ICS’15). ACM, New York, NY, 67-77. DOI:http:/dx.doi.org/
10.1145/2751205.2751237

Lingda Li, Ari B. Hayes, Shuaiwen Leon Song, and Eddy Z. Zhang. 2016. Tag-split cache for efficient GPGPU
cache utilization. In Proceedings of the 2016 International Conference on Supercomputing (ICS’16). ACM,
New York, NY, Article No. 43. DOI : http:/dx.doi.org/10.1145/2925426.2926253

Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. 2012. Why on-chip cache coherence is here to stay.
Communications of the ACM 55, 7, 78-89. DOI : http:/dx.doi.org/10.1145/2209249.2209269

Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov, Onur Mutlu, and Yale N.
Patt. 2011. Improving GPU performance via large warps and two-level warp scheduling. In Proceedings
of the 44th Annual IEEE | ACM International Symposium on Microarchitecture (MICRO-44). ACM, New
York, NY, 308-317. DOI: http:/dx.doi.org/10.1145/2155620.2155656

NVIDIA. 2009. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi. Technical Report. NVIDIA
Corporation. http://www.nvidia.co.uk/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_
Architecture_Whitepaper.pdf.

NVIDIA. 2012. NVIDIAs Next Generation CUDA Compute Architecture: Kepler GKI110. Techni-
cal Report. NVIDIA Corporation. http://www.nvidia.co.uk/content/PDF/kepler/NVIDIA-Kepler-GK110-
Architecture-Whitepaper.pdf.

NVIDIA. 2014. CUDA by Example—Errata Page. Retrieved October 27, 2016, from http:/developer.
nvidia.com/cuda-example-errata-page.

NVIDIA. 2016. Parallel Thread Execution ISA, Version 5.0. Retrieved October 27, 2016, from http:/
docs.nvidia.com/cuda/parallel-thread-execution.

Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M. Beckmann, Mark D. Hill, Steven
K. Reinhardt, and David A. Wood. 2013. Heterogeneous system coherence for integrated CPU-GPU
systems. In Proceedings of the 46th Annual IEEE /ACM International Symposium on Microarchitecture
(MICRO-46). ACM, New York, NY, 457-467. DOI : http://dx.doi.org/10.1145/2540708.2540747

Govindan Ravindran and Michael Stumm. 1997. A performance comparison of hierarchical ring- and
mesh-connected multiprocessor networks. In Proceedings of the 3rd IEEE Symposium on High Per-
formance Computer Architecture (HPCA97). IEEE, Los Alamitos, CA, 58. http:/dl.acm.org/citation.
cfm?id=548716.822685

Minsoo Rhu, Michael Sullivan, Jingwen Leng, and Mattan Erez. 2013. A locality-aware memory hi-
erarchy for energy-efficient GPU architectures. In Proceedings of the 46th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO-46). ACM, New York, NY, 86-98. DOI:http://
dx.doi.org/10.1145/2540708.2540717

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

http://dx.doi.org/10.1145/2451116.2451158
http://dx.doi.org/10.1145/2896377.2901468
http://dx.doi.org/10.1109/MM.2010.82
http://digital-library.theiet.org/content/journals/10.1049/iet-cdt.2014.0092
http://digital-library.theiet.org/content/journals/10.1049/iet-cdt.2014.0092
http://dx.doi.org/10.1109/MM.2005.35
http://dx.doi.org/10.1145/223982.223995
http://dx.doi.org/10.1109/HPCA.2012.6168947
http://dx.doi.org/10.1109/HPCA.2012.6168947
http://dx.doi.org/10.1145/2485922.2485964
http://dx.doi.org/10.1145/2751205.2751237
http://dx.doi.org/10.1145/2751205.2751237
http://dx.doi.org/10.1145/2925426.2926253
http://dx.doi.org/10.1145/2209249.2209269
http://dx.doi.org/10.1145/2155620.2155656
http://www.nvidia.co.uk/content/PDF/fermiwhitepapers/NVIDIAFermiComputeArchitectureWhitepaper.pdf
http://www.nvidia.co.uk/content/PDF/fermiwhitepapers/NVIDIAFermiComputeArchitectureWhitepaper.pdf
http://www.nvidia.co.uk/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.co.uk/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://developer.nvidia.com/cuda-example-errata-page
http://developer.nvidia.com/cuda-example-errata-page
http://docs.nvidia.com/cuda/parallel-thread-execution
http://docs.nvidia.com/cuda/parallel-thread-execution
http://dx.doi.org/10.1145/2540708.2540747
http://dl.acm.org/citation.cfm?id=548716.822685
http://dl.acm.org/citation.cfm?id=548716.822685
http://dx.doi.org/10.1145/2540708.2540717
http://dx.doi.org/10.1145/2540708.2540717

Cooperative Caching for GPUs 39:25

Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2012. Cache-conscious wavefront scheduling. In Pro-
ceedings of the 2012 45th Annual IEEE /ACM International Symposium on Microarchitecture (MICRO-
45). IEEE, Los Alamitos, CA, 72-83. DOI : http://dx.doi.org/10.1109/MICR0O.2012.16

Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2013. Divergence-aware warp scheduling. In Pro-
ceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-46).
ACM, New York, NY, 99-110. DOI : http:/dx.doi.org/10.1145/2540708.2540718

Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep Dubey, Stephen
Junkins, et al. 2008. Larrabee: A many-core x86 architecture for visual computing. In ACM SIG-
GRAPH 2008 Papers (SIGGRAPH’08). ACM, New York, NY, Article No. 18. DOI:http:/dx.doi.org/
10.1145/1399504.1360617

Inderpreet Singh, Arrvindh Shriraman, Wilson W. L. Fung, Mike O’Connor, and Tor M. Aamodt.
2013. Cache coherence for GPU architectures. In Proceedings of the 2013 IEEE 20th Interna-
tional Symposium on High Performance Computer Architecture (HPCA’13). 578-590. http://doi.
ieeecomputersociety.org/10.1109/HPCA.2013.6522351

John A. Stratton, Christopher Rodrigrues, I.-Jui Sung, Nady Obeid, Liwen Chang, Geng Liu, and Wen-Mei W.
Hwu. 2012. Parboil: A Revised Benchmark Suite for Scientific and Commercial Throughput Computing.
Technical Report IMPACT-12-01. University of Illinois at Urbana-Champaign, Urbana.

David Tarjan, Jiayuan Meng, and Kevin Skadron. 2009. Increasing memory miss tolerance for SIMD cores.
In Proceedings of the Conference on High Performance Computing Networking, Storage, and Analysis
(SC’09). ACM, New York, NY, Article No. 22. DOI: http://dx.doi.org/10.1145/1654059.1654082

David Tarjan and Kevin Skadron. 2010. The sharing tracker: Using ideas from cache coherence hardware
to reduce off-chip memory traffic with non-coherent caches. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage, and Analysis (SC’10).
IEEE, Los Alamitos, CA, 1-10. DOI: http://dx.doi.org/10.1109/SC.2010.54

Yi Yang, Ping Xiang, Mike Mantor, and Huiyang Zhou. 2012. CPU-assisted GPGPU on fused CPU-
GPU architectures. In Proceedings of the 2012 IEEE 18th International Symposium on High-
Performance Computer Architecture (HPCA’'12). IEEE, Los Alamitos, CA, 1-12. DOI:http:/dx.doi.org/
10.1109/HPCA.2012.6168948

A. Yazdanbakhsh, B. Thwaites, H. Esmaeilzadeh, G. Pekhimenko, O. Mutlu, and T. C. Mowry. 2016. Mitigat-
ing the memory bottleneck with approximate load value prediction. IEEE Design and Test 33, 1, 32—42.
DOI:http:/dx.doi.org/10.1109/MDAT.2015.2504899

Received June 2016; revised August 2016; accepted September 2016

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 39, Publication date: December 2016.

http://dx.doi.org/10.1109/MICRO.2012.16
http://dx.doi.org/10.1145/2540708.2540718
http://dx.doi.org/10.1145/1399504.1360617
http://dx.doi.org/10.1145/1399504.1360617
http://doi.ieeecomputersociety.org/10.1109/HPCA.2013.6522351
http://doi.ieeecomputersociety.org/10.1109/HPCA.2013.6522351
http://dx.doi.org/10.1145/1654059.1654082
http://dx.doi.org/10.1109/SC.2010.54
http://dx.doi.org/10.1109/HPCA.2012.6168948
http://dx.doi.org/10.1109/HPCA.2012.6168948
http://dx.doi.org/10.1109/MDAT.2015.2504899

