Managing the Memory Hierarchy in GPUs

Saumay Dublish

Doctor of Philosophy
Institute of Computing Systems Architecture
School of Informatics
University of Edinburgh
2018

Abstract

Pervasive use of GPUs across multiple disciplines is a result of continuous adaptation
of the GPU architectures to address the needs of upcoming application domains. One
such vital improvement is the introduction of the on-chip cache hierarchy, used primarily
to filter the high bandwidth demand to the off-chip memory. However, in contrast to
traditional CPUs, the cache hierarchy in GPUs is presented with significantly different
challenges such as cache thrashing and bandwidth bottlenecks, arising due to small
caches and high levels of memory traffic. These challenges lead to severe congestion
across the memory hierarchy, resulting in high memory access latencies. In memory-
intensive applications, such high memory access latencies often get exposed and can
no longer be hidden through multithreading, and therefore adversely impact system
performance.

In this thesis, we address the inefficiencies across the memory hierarchy in GPUs
that lead to such high levels of congestion. We identify three major factors contributing
to poor memory system performance: first, disproportionate and insufficient bandwidth
resources in the cache hierarchy; second, poor cache management policies; and third,
high levels of multithreading. In order to revitalize the memory hierarchy by addressing
the above limitations, we propose a three-pronged approach. First, we characterize the
bandwidth bottlenecks present across the memory hierarchy in GPUs and identify the
architectural parameters that are most critical in alleviating congestion. Subsequently,
we explore the architectural design space to mitigate the bandwidth bottlenecks in a
cost-effective manner. Second, we identify significant inter-core reuse in GPUs, present-
ing an opportunity to reuse data among the L1s. We exploit this reuse by connecting
the L1 caches with a lightweight ring network to facilitate inter-core communication of
shared data. We show that this technique reduces traffic to the L2 cache, freeing up the
bandwidth for other accesses. Third, we present Poise, a machine learning approach
to mitigate cache thrashing and bandwidth bottlenecks by altering the levels of multi-
threading. Poise comprises a supervised learning model that is trained offline on a set
of profiled kernels to make good warp scheduling decisions. Subsequently, a hardware
inference engine is used to predict good warp scheduling decisions at runtime using
the model learned during training. In summary, we address the problem of bandwidth
bottlenecks across the memory hierarchy in GPUs by exploring how to best scale,
supplement and utilize the existing bandwidth resources. These techniques provide an
effective and comprehensive methodology to mitigate the bandwidth bottlenecks in the

GPU memory hierarchy.

Lay Summary

Our day-to-day life revolves around the marvels of computational progress. Ranging
from small-scale devices such as smart phones and fitness trackers to large-scale services
such as search engines and cloud computing — all are rooted in the tremendous progress
made by the computer industry. Over the last decade, a lot of this progress is credited
to the success of Graphics Processing Units or GPUs. Recent advancements have led
to significant improvements in the graphics performance, which is evidenced by high
resolution games and realistic animation films. In addition, modern GPUs have also
greatly influenced general-purpose areas such as artificial intelligence and healthcare.

Modern GPUs pose several challenges to computer architects. These challenges can
be explained through a restaurant analogy. In older times, restaurant kitchens lacked
modern storage equipments to preserve perishable products. Therefore, chefs had to
repeatedly visit the distant grocery stores to buy raw materials for their recipes. With the
advent of in-house storage facilities such as refrigerators, number of trips to the grocery
stores could be reduced by storing or caching perishable groceries more proximately.
A problem arises when large number of chefs pose conflicting storage needs. In such
a scenario, shared storage proves to be insufficient in terms of capacity as well as the
available parallelism in accessing the shared storage. This results in large queues and
congestion at the refrigerators (and even at the grocery stores). For a given amount
of storage and floorspace, the congestion problem can be addressed primarily in three
ways. Firstly, by allowing multiple chefs to access the storage at the same time; for
instance, by adding independent doors to each shelf in the refrigerator. Secondly, by
encouraging chefs to cooperatively share common products to avoid redundant trips to
the refrigerator by multiple chefs for the same items. Thirdly, by limiting the number
of chefs so that their storage demand matches the available kitchen resources, while
also ensuring constant food supply to the customers. Similar to the restaurant scenario,
where multiple chefs process raw food by following a recipe, GPUs have multiple
processors that crunch raw data by following a set of instructions. GPUs retrieve this
data from storage elements such as proximate caches and distant memories, and then
pour it into the computational machinery inside the GPU to complete a task. Similar
to food stores, shared memory resources in GPUs also suffer from severe congestion.
In this thesis, we address the high levels of congestion in GPUs and propose three
solutions, analogous to the solutions proposed for the restaurant problem. In effect, we

investigate ways to efficiently manage the shared memory resources in GPUs.

Acknowledgements

I would like to express my deep gratitude to my advisor, Prof. Nigel Topham, for his
guidance, advice and kindness throughout my graduate studies. Nigel gave me the
freedom and encouragement to explore new problems, which was vital in enabling me
to mature as a researcher. He always had the time and utmost patience whenever I
needed advice and direction in my research. I am extremely grateful for his mentorship.

I would like to thank my co-advisor, Dr. Vijay Nagarajan, for his invaluable counsel.
His confidence in my abilities and constant encouragement during the highs and lows of
my graduate studies kept me motivated, and inspired me to pursue meaningful research.
The door to his office was always open for discussions and brainstorming, which proved
extremely useful in shaping my work. I am very grateful to him for all the guidance and
support.

I would like to thank Dr. Boris Grot for being part of the annual review committee
and providing valuable advice and suggestions. I also thank Prof. Michael O’Boyle and
Dr. Robert Mullins for being on my viva panel and making it a memorable experience.
I thank several members of ICSA who provided valuable feedback, suggestions and a
space to improve my ideas. I would like to specially thank Arpit Joshi, Cheng-Chieh
Huang, José Cano Reyes, Marco Elver, Priyank Faldu and Rakesh Kumar for their
valuable help and support, both technical and otherwise. I also thank several anonymous
reviewers from the Computer Architecture community who provided valuable feedback
and suggestions, which was crucial in improving my work. Furthermore, I am grateful
for the School of Informatics PhD Scholarship and Saranu International Research
Scholarship in enabling my PhD study.

I would like to thank all my friends who offered me their joyous company during my
time in Edinburgh. Their friendship helped me cruise through the years of my graduate
studies, and made each and every moment spent here memorable.

Finally, I would like to express my profound gratitude to my parents, Geeta Dublish
and Rajeev Dublish, for providing me with the values, guidance and unwavering
support throughout my life. It is difficult to imagine reaching this juncture without
their enormous love and sacrifices. I also thank my brother, Tushar Dublish, for his

incredible support and assistance throughout my graduate studies.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Saumay Dublish)

Dedicated to my parents

1 Introduction

Table of Contents

1.1 TheProblem.

1.1.1
1.1.2
1.1.3
1.1.4
1.1.5

1.2 Contributions

1.2.1
1.2.2
1.2.3
1.2.4

221
222
223

Inadequate Bandwidth Resources
Poor Cache Management
High Thread-level Parallelism
Implications of Bandwidth Bottlenecks

Summary

Cost-effective Scaling of Bandwidth Resources

Cooperative Caching for L1 Caches
Managing Thread-level Parallelism
Summaryo
1.3 Published Work

1.4 Organization

GPU Computing

2.1 Programming Model
2.2 GPU Architecture
Warp Scheduling
GPU Memory Hierarchy

Memory Coalescing

3 Evaluating and Mitigating Bandwidth Bottlenecks

3.1 Overview
3.2 Background

3.2.1
322

Baseline Architecture

Simulation Framework

vi

O O© U9 9 O & N Ll A A W N N =

323 Workloads 25

33 Motivation e 26
3.3.1 Limits of Latency Tolerancein GPUs 26
3.3.2 Performance Impact of Reducing Congestion 27
3.4 Dissecting the Bandwidth Bottleneck 28
3.4.1 Implications of Congestion 29
342 Causesof Congestion. 33
3.5 Consolidating the Design Space 35
3.5.1 Off-chipMemory 36
352 L2Cache 37
353 Ll1Cache 37
3.6 Design Space Exploration. 37
3.6.1 Results 38
3,62 Summary 40
3.7 Cost-Benefit Analysis 41
3.7.1 Cost-effective Design Space 41
3.7.2 AsymmetricCrossbar 42
3.7.3 Results with Cost-effective Configuration 42
38 RelatedWork 43
3.8.1 Cache Bypassing and Request Reordering 43
3.8.2 On-chip NetworksinGPUs 46
3.8.3 Design Space Exploration 47
39 Conclusion L 48
Cooperative Caching for GPUs 50
4.1 Overviewo e 50
42 Background 53
4.2.1 Baseline Architectureo 53
422 Workloads 55
4.3 Needfor Cooperation 55
43.1 Inter-coreReuse 56
4.3.2 Efficacy of Cooperation 57
44 Cooperative Caching 58
4.4.1 AnalyticalModel 0oL 59
4472 Architecture. 60

Vii

443 ShadowTags 62

444 RequestThrottler, 63
445 Working Example 64
45 BEvaluation 65
4.5.1 Implementation 65
452 Experimental Setup 66
453 Results 66
454 Hardware Cost 70
4.5.5 Sensitivity Analysis Lo 71
45.6 Discussion 73
4.6 Comparative Study 74
4.6.1 IncreasinglL2Banks 74
4.6.2 Sharing Tracker 75
4.6.3 Clustered Sharing 76
4.64 Summary 77
477 Related Work 77
4.7.1 Cooperative CachinginCMPs 77
472 RingNetworko oo 77
4773 ShadowTags 79
474 Cache Management. 79
47.5 Thread Block Scheduling 81
4.8 Conclusion 82
Managing Thread-level Parallelism 83
5.1 Overview e e 83
5.2 Background 86
5.2.1 Baseline Architecture oL 86
5.2.2 Supervised Learning 86
53 Motivation e 87
5.3.1 Cache-Conscious Wavefront Scheduling 87
5.3.2 Priority-based Cache Allocation 88
5.3.3 Pitfalls in Prior Techniques 89
534 Summary 90
5.4 Poise: A System Overview oL 91
5.5 Machine Learning Framework 91

viii

5.5.1 Analytical Model 92

5.5.2 Feature Vector Representation 97
5.5.3 Training Methodology 101
5.54 RegressionModel 102
5.6 Hardware Inference Engine 103
5.6.1 PredictionStage 103
5.6.2 Correction Stage 104
5.63 WarpScheduler 105
5.64 Summary 106
577 Evaluation 106
5771 Workloads 106
5.7.2 Regression Model Evaluation 106
5.7.3 Experimental Methodology 108
5.74 Performance, 109
5775 LlCacheHitRate 110
5.7.6 Average Memory Latency 110
5.7.77 Sensitivity Studyo 111
578 CaseStudy 113
5.7.9 Hardware Overheads 114
5.7.10 Discussion 115
5.8 RelatedWork 115
5.8.1 Cache Management and Warp Scheduling 115
5.8.2 Machine Learning in Systems 117
59 Conclusion 118
Conclusion 120
6.1 Contributions 120
6.1.1 Scaling the Bandwidth Resources 121
6.1.2 Supplementing the Bandwidth Resources 121
6.1.3 Utilizing the Bandwidth Resources 122
6.2 Critical Analysis 122
6.2.1 Easeof Adoption 123
6.2.2 Portability 124
6.2.3 Evaluation Methodology 124
6.2.4 Other Inefficiencies in the Memory Hierarchy 125

6.3 FutureWork
6.4 ConcludingRemarks,

Bibliography

1.1
1.2

2.1
2.2
2.3

3.1
32
33
34

3.5
3.6

3.7

3.8

39

3.10

3.11

List of Figures

Typical bandwidth hierarchy inGPUs
Proposed three-pronged approach to address the bandwidth bottlenecks
across the memory hierarchy in GPUs. Bandwidth demand is repre-
sented by blue arrows; reduction in bandwidth demand is represented
by crossed red arrows; and scaled or additional bandwidth resources

are represented by red blocks. L.

CUDA program structure oo v v v i v
System-level architecture of a typical GPU

Baseline GPU architecture

Issue-stall cycles, Average Hit Latencies to L2 (L2-AHL) and Average
Memory Latencies (AML) for memory-intensive applications.
Performance variation with increasing L1 miss latency.
Occupancy levels in L2 access queue during the usage lifetime
Occupancy levels in DRAM access queue during the usage lifetime
[lustrating the effects of structural hazards
Issue-stall cycle distribution depicting stalls due to data hazards (data-
MEM and data-ALU), structural hazards (str-MEM and str-ALU) and
fetch hazard (fetch).
DRAM bandwidth efficiency L.
L2 stalls due to back pressure from interconnect (bp-ICNT) and DRAM
(bp-DRAM) and contention on L2 data port, cache lines and MSHRs.
L1 stalls due to contention on cache lines and MSHRs, and back pres-
sure from L2 cache (bp-L2).
IPC gain with 4 x design-point scaling of bandwidth resources in L1,
L2, DRAM and synergistically across different levels.
Core frequency variation on real GTX 480 GPU.

Xi

12
15
16

22
26
28
29
31

32

33

34

35

3.12 Performance gain with cost-effective configurations in order of increas-

ing or equal cost overheads, normalized to the baseline architecture.

4.1 (a) LI-Miss: L1 cache miss rates (b) LI-Replication: Percentage of L1
misses cached in remote L1 caches.
4.2 Heatmaps indicating inter-core reuse by cores on the x-axis for data
cached on the cores on the y-axis. Dark spots in the heatmaps indicate
high reuse between the corresponding cores at their x and y coordinates.
4.3 Speedup of cooperation with varying remote L1 access latencies. . . .
4.4 Cooperative Caching Network.
4.5 Working of the Cooperative Caching Network with Request Throttling.
4.6 Speedup for applications withgRC > 10
4.7 Percentage improvement in IPC for applications with uRC <3
4.8 Percentage reductionin L1 to L2 traffic
4.9 Normalized average memory latency
4.10 Normalized core stallcycles
4.11 Normalized off-chip memory traffic
4.12 Energy dissipationwithCCN
4.13 Speedup with varying L1 cachesize
4.14 Speedup with link latencies of 1,3 and Scycles
4.15 Speedup with varying SIMD lanes
4.16 Speedup with2x L2 banksand CCN.
4.17 Ideal speedup with L1 cacheclusters

5.1 Cache footprint with maximum warps and reduced warps
5.2 Static profiling of it kernel #112
5.3 System-level architecture of Poise
5.4 L1 hit rate comparison for pand N—p warps
5.5 Correlation between speedup and p,,/,, With p=Tand N =24
5.6 LI hitrate distribution.
5.7 Scoring performance peaks to avoid cliffs
5.8 Poise Warp Scheduler architecture
5.9 Performance normalized to GTO
5.10 Overall L1 hitrate
5.11 Average Memory Latency (AML) normalized to GTO
5.12 Sensitivity to L1 cachesize L.

Xii

42

51

5.13 Sensitivity to search stride (e, €p) . .

5.14 Sensitivity to removing a feature x; from X L.

5.15 Comparing static and Poise executions

Xiii

3.1
3.2

33

4.1
4.2

4.3

5.1
52
5.3
54
5.5

6.1

List of Tables

Baseline architecture parameters for GPGPU-Sim 24
List of workloads. P..: Speedup with infinite bandwidth memory sys-
tem; Pprav: Speedup with a baseline cache hierarchy and infinite band-
widthDRAM. 25
Consolidated design space showing baseline, scaled (4x) and cost-

effective configurations. L. 36

Baseline architectural parameters for GPGPU-Sim 53
Benchmark characterization: (a) PerfX - speedup with perfect memory

(b) uRC - percentage of total L1 load misses that have reusable data on

aremote L1. L 54
CCNparameters o v vttt e 66
Baseline architecture parameters for GPGPU-Sim 86
Variables derived from the analytical model 98
Feature Vector (X) and Feature Weights (o;;) 100
Training and evaluation workloads 107
Poise parameters 107

Relative overhead of adoption for the proposed schemes indicated by H
(highest), M (moderate) and L (lowest). 124

Xiv

Chapter 1
Introduction

In the past decade, the journey of GPUs in transforming the computing landscape has
been phenomenal. Initially used to render graphics for computer games, GPUs are
now at the centre of major advancements in areas ranging from artificial intelligence to
enterprise computing. As a result, GPUs have proven to be of substantive significance
in the world of general-purpose computing, emerging as a formidable alternative to
traditional single-threaded processors.

Wide contrast in the performance of CPUs and GPUs derives from a fundamental
difference in the design philosophies of these architectures. CPUs are heavily optimized
for single-threaded performance, dedicating a substantial portion of the die area to
storage units, such as caches, for faster data access. In contrast, GPUs are heavily
multithreaded and dedicate most of the die area to compute units, making them more
tolerant to memory latencies of individual threads. In such multithreaded architectures,
however, memory bandwidth poses a much bigger challenge as high levels of multi-
threading present a high demand on the off-chip memory bandwidth. This has led to
the introduction of deeper memory hierarchies in modern GPUs, comprising multilevel
caches, to filter the bandwidth demand to off-chip memory. However, compared to
CPUs, the cache hierarchy in GPUs encounter significantly different demands and bot-
tlenecks due to considerably higher volumes of memory traffic. As a result, the adoption
of conventional cache hierarchy in GPUs has triggered significant research efforts to
address these new bottlenecks and to ensure a well performing memory system, which

is crucial for the future success of GPUs.

Chapter 1. Introduction 2

1.1 The Problem

The caches in GPUs are much smaller in comparison to CPU caches, in line with
the throughput-oriented nature of GPUs. For instance, Intel’s Haswell processor [55]
features over 8§ MB of on-chip memory that is shared by a handful of threads. In contrast,
NVIDIA’s Kepler GPU [116] features only around 2 MB of on-chip memory that is
shared by tens of thousands of threads. Consequently, small caches and large number
of threads in GPUs can lead to high cache miss rates and cache thrashing [66, 67, 132].
Due to poor cache performance, the cache hierarchy does not adequately filter the
bandwidth demand to off-chip memory. In addition, the cache hierarchy exposes its own
bandwidth limitations in sustaining such high levels of memory traffic [139]. As a result,
the bandwidth implications of the entire memory hierarchy, including caches, pose a
severe challenge to GPU performance and warrants investigation [76]. In the remainder
of this section, we briefly present the principal factors that lead to bandwidth bottlenecks
across the memory hierarchy in GPUs and discuss their performance implications. Later,

in subsequent chapters, we delve into more details about these challenges.

1.1.1 Inadequate Bandwidth Resources

A typical memory hierarchy comprises small and fast first-level caches closest to the
processors, and progressively larger and slower caches at the lower levels of the memory
hierarchy. The aggregate bandwidth provided by each memory level also tapers as
we go lower in the memory hierarchy, and is depicted by the bandwidth pyramid in
Figure 1.1. This is because each level filters the bandwidth demand to the lower level,
and consequently the lower levels require only a fraction of bandwidth of the higher
levels. Therefore, appropriate allocation of bandwidth resources to each level of the
memory hierarchy, i.e., shaping the bandwidth pyramid, is critical for a well-performing
memory system.

In GPUs, the off-chip bandwidth continues to scale with upcoming memory tech-
nologies such as High Bandwidth Memories (HBM), providing high bandwidth to inject
memory responses into the cache hierarchy. In addition, the number of GPU cores
continue to grow, increasing the bandwidth demand on the cache hierarchy. However,
the conventional cache hierarchy adopted by GPUs is under-provisioned in bandwidth
resources (such as on-chip interconnect, peripheral buffers, ezc.) to handle such high vol-
umes of memory traffic. As a result, the bandwidth hierarchy is becoming increasingly

imbalanced, leading to growing congestion across the memory hierarchy — specifically

Chapter 1. Introduction 3

Register File

L1

L2

DRAM

Figure 1.1: Typical bandwidth hierarchy in GPUs

the caches. Therefore, a key challenge is to investigate the distribution of bandwidth de-
mand and the resultant bottlenecks across the memory hierarchy in GPUs, and evaluate
the design space to provision the cache hierarchy with appropriate bandwidth resources,

thereby mitigating the bandwidth bottlenecks.

1.1.2 Poor Cache Management

Typically, GPUs exhibit high cache miss rates, indicating that the cache performance
is far from perfect. This is partly because current GPU cache management techniques
are unable to utilize these caches effectively. One such inefficiency in current GPU
cache management policies is the repeated access to the shared L2 cache from different
L1 caches for the same data, arising due to inter-core data reuse. Such a policy is a
common occurrence in CPUs and is generally benign for performance when L1 miss
rates are low. In such cases, it does not excessively deplete the memory bandwidth.
In GPUs, however, such a policy is corrosive to the overall performance due to high
L1 miss rates. As a result, for memory-intensive applications, where performance is
constrained by memory bandwidth, such a policy aggravates the bandwidth issue by
repeated memory requests for data already cached elsewhere at the same level in the
memory hierarchy. Evidently, the policies that are suitable for CPUs may not be suitable
for GPUs. Therefore, it is critical to address the inefficiencies of the existing cache
management policies in GPUs to ensure effective usage of scarce bandwidth resources.
Notably, the inefficient usage of caches in GPUs is even more alarming considering

that the die area they occupy might otherwise be used to implement additional GPU

Chapter 1. Introduction 4

cores, which arguably hold much more importance to throughput-oriented computing
systems. For this to be an effective trade-off, the efficiency of the cache hierarchy must

be maximized.

1.1.3 High Thread-level Parallelism

GPUs employ a Single-Instruction Multiple-Threads (SIMT) execution model, which
requires a large number of threads to execute a set of similar instructions. Due to the
abundance of parallel work available in such systems, set of threads that encounter a
long latency memory operation are replaced by another set of threads that are ready
to resume execution, while the pending memory operations are completed. Therefore,
GPUs rely on a high degree of thread-level parallelism (via multithreading) to hide
the long latency of memory operations. Often, in compute-intensive applications
where long latency memory operations are infrequent, increasing the number of threads
available for multithreading continues to improve the latency hiding ability of GPUs.
However, in memory-intensive applications where memory instructions account for
a significant fraction of the total instructions, increasing the number of threads often
leads to a considerable increase in demand for memory resources such as caches and
memory bandwidth. Consequently, the high demand for memory resources overwhelms
the memory hierarchy and leads to poor memory system performance, giving rise
to problems such as cache thrashing and bandwidth bottlenecks. As a result, these
side-effects adversely affect system performance, thereby diminishing the benefits of
parallelism.

The problems of cache thrashing and bandwidth bottlenecks can be mitigated by
reducing the level of multithreading in the GPUs. However, the optimal level of
multithreading may vary significantly across different applications and architectures,
and therefore naively restricting multithreading can adversely affect throughput. Due
to this tension between thread-level parallelism and memory system performance, and
its direct impact on cache performance and bandwidth demand, balancing these two

properties poses a significant challenge.

1.1.4 Implications of Bandwidth Bottlenecks

Due to the bandwidth bottlenecks arising out of the above challenges, there can be severe
congestion across the memory hierarchy in GPUs. Such high levels of congestion lead

to increased average memory latencies, and this has three major implications. Firstly, in

Chapter 1. Introduction 5

memory-intensive applications, due to insufficient computation to mask high memory
latencies, such latencies appear in the critical path of system performance. Secondly,
high latencies of outstanding miss requests lead to prolonged contention for cache
resources such as Miss Status Holding Registers (MSHRs) and replaceable cache
lines. This effect increases memory latencies even further, as succeeding requests
get serialized and have to wait for outstanding misses to complete and relinquish the
resources. And thirdly, back pressure from a congested lower level further throttles
the cache pipeline and prevents it from operating at peak throughput, exacerbating the
bandwidth limitation in the cache hierarchy. The combination of the above factors

forces the cores to stall, leading to performance degradation.

1.1.5 Summary

In summary, we identify that the bandwidth bottleneck across the memory hierarchy
is a significant problem in modern GPUs; this is the key issue that we address in this
thesis. There are three principal factors that lead to bandwidth bottlenecks: firstly, the
growing bandwidth imbalance in the memory hierarchy; secondly, inefficient cache
management; and thirdly, high levels of thread-level parallelism. In memory-intensive
applications, these factors lead to high congestion in the memory hierarchy, thereby

adversely impacting performance.

1.2 Contributions

In this thesis, we propose the following three-pronged approach to address the band-
width bottlenecks arising out of the issues discussed in the previous section. Firstly,
we characterize the memory hierarchy with respect to the bandwidth bottlenecks and
propose cost-effective scaling of bandwidth resources. Secondly, we propose a coop-
erative caching mechanism for L1 caches to improve the caching efficiency in GPUs
with respect to the bandwidth demand on the lower levels. And thirdly, we propose a
machine learning technique to adaptively balance thread-level parallelism and memory
system performance. We discuss these strategies briefly in the remainder of this section,

followed by detailed evaluation and discussion in the subsequent chapters.

Chapter 1. Introduction 6

1.2.1 Cost-effective Scaling of Bandwidth Resources

In this proposal (detailed in Chapter 3), we address the challenge of rising imbalance in
the bandwidth hierarchy in GPUs, which is discussed in Section 1.1.1. We characterize
the bandwidth bottlenecks present across the memory hierarchy in GPUs and quantify
the stalls throughout the memory hierarchy. We use this characterization to identify
the architectural parameters that are most critical in alleviating congestion. We explore
the architectural design space to mitigate the bandwidth bottlenecks and show that the
performance improvement achieved by mitigating the bandwidth bottleneck in the cache
hierarchy can exceed the speedup obtained by a memory system with a baseline cache
hierarchy and High Bandwidth Memory (HBM) DRAM. This signifies the importance
of resolving bandwidth bottlenecks in the cache hierarchy, in comparison to simply
increasing off-chip memory bandwidth.

We also show that addressing the bandwidth bottleneck in isolation, at specific
levels, can be sub-optimal and can even be counter-productive. Therefore, we show
that it is imperative to resolve the bandwidth bottlenecks synergistically across different
levels of the memory hierarchy. With the insights developed in this proposal, we
perform a cost-benefit analysis and identify cost-effective configurations of the memory
hierarchy that effectively mitigate the bandwidth bottlenecks. We conclude this study
by presenting a cost-effective configuration that comprises an asymmetric crossbar
alongside scaled peripheral resources such as buffers and MSHRs. We show that our
final configuration achieves a performance improvement of 29% on average, with a

minimal area overhead of 1.5%, compared to the baseline modern GPU.

1.2.2 Cooperative Caching for L1 Caches

In this proposal (detailed in Chapter 4), we aim to address an inefficiency in the
traditional cache management techniques, which is discussed in Section 1.1.2. We
identify significant data reuse across different GPU cores, presenting an opportunity
to reuse data among the L1 caches. By sharing data among L.1s, we aim to reduce the
pressure on the shared L2 bandwidth, thereby reducing the memory access latencies that
lie in the critical path. We show how data reuse can be exploited via an L1 Cooperative
Caching Network (CCN), thereby supplementing the existing bandwidth resources and
reducing demand on the shared L2 bandwidth. In the proposed architecture, we connect
the L1 caches with a lightweight ring network to facilitate inter-core communication of

shared data. We show that this technique reduces traffic to the L2 cache by an average

Chapter 1. Introduction 7

of 29%, freeing up the shared L2 bandwidth for other accesses. We also show that CCN
reduces the average memory latency by 24%, thereby reducing core stall cycles by
26% on average. This translates into an overall performance improvement of 14.7% on
average (and up to 49%) for applications that exhibit reuse across L1 caches. In doing
so, CCN incurs a nominal area and energy overhead of 1.3% and 2.5% respectively.
Notably, the performance improvement with our proposed CCN compares favourably
to the performance improvement achieved by simply doubling the number of L2 banks

by up to 34%.

1.2.3 Managing Thread-level Parallelism

In this proposal (detailed in Chapter 5), we address the adverse effect of high thread-level
parallelism on memory system performance, which is discussed in Section 1.1.3. We
present Poise, a novel approach that alters the warp scheduling mechanism in the GPU
to balance thread-level parallelism and memory system performance. Poise achieves
this by adding a set of two knobs to the warp scheduler. The first knob determines
the number of warps that can pollute the cache in order to improve memory system
performance, while the second knob determines the overall thread-level parallelism
in order to maximize the multithreading available in the system. Poise determines
these warp scheduling decisions using the following two major components: a machine
learning framework and a hardware inference engine. The machine learning framework
comprises a supervised learning model that is trained offline on a large set of profiled
kernels to make good warp scheduling decisions. This is achieved by learning a mapping
from a set of application and architectural features, to the warp scheduling decisions
that led to the best performance for a kernel. At runtime, the hardware inference engine
collects these features periodically using hardware performance counters, and uses the
mapping that was learned during training to dynamically predict good warp scheduling
decisions. As a result, Poise achieves a performance improvement of up to 2.94x and a
harmonic mean speedup of 46.6%, over the baseline greedy-then-oldest warp scheduler.
It also outperforms the prior state-of-the-art warp scheduler by an average of 15.1%,

while incurring minimal hardware overheads in contrast to prior techniques.

1.2.4 Summary

In this thesis, we investigate the bandwidth implications of the different levels of the

memory hierarchy and demonstrate how the current policies breach the latency tolerance

Chapter 1. Introduction

L2

DRAM

(a) Baseline bandwidth hierar-
chy when high bandwidth de-

mand causes a bottleneck.

.] s] e] =

L2

DRAM

(c) Supplementing the exist-

ing bandwidth resources in the

DRAM

(b) Scaling the existing band-

width resources in the cache

hierarchy.

VELURE FTIURT FRROAT
L1 L1 L1
VI AR

L2
7 1YY
DRAM

(d) Utilizing the existing band-

width resources by reducing

cache hierarchy. the bandwidth demand.

Figure 1.2: Proposed three-pronged approach to address the bandwidth bottlenecks
across the memory hierarchy in GPUs. Bandwidth demand is represented by blue
arrows; reduction in bandwidth demand is represented by crossed red arrows; and

scaled or additional bandwidth resources are represented by red blocks.

property of GPUs by causing congestion across the memory hierarchy. The baseline
bandwidth hierarchy is represented in Figure 1.2a where high demand on the memory
hierarchy leads to a bandwidth bottleneck. Note that we omit register files from the
discussion as they are often underutilized for general-purpose applications [1, 121] and
are seldom a bandwidth bottleneck. We propose a three-pronged approach to address the
problem. Firstly, we investigate how to best scale the existing bandwidth resources in
the GPU through characterization and design space exploration (Figure 1.2b). Secondly,
we investigate how to best supplement the existing bandwidth resources through a
cooperative caching network for L1 caches (Figure 1.2c). And thirdly, we investigate
how to best utilize the existing bandwidth resources by balancing thread-level parallelism

and memory system performance (Figure 1.2d).

Chapter 1. Introduction 9

1.3 Published Work

Some of the contents of this thesis have appeared in the following publications:

e S. Dublish, Student Research Poster: Slack-Aware Shared Bandwidth Manage-
ment in GPUs, ACM SRC, The 25th International Conference on Parallel Archi-

tectures and Compilation Techniques (PACT), Haifa, Israel, September 11-15,
2016.

— Appears in Chapter 6 (Section 6.3).

e S. Dublish, V. Nagarajan and N. Topham, Characterizing Memory Bottlenecks in
GPGPU Workloads, IEEE International Symposium on Workload Characteriza-
tion (IISWC), Providence, Rhoda Island, USA, September 25-27, 2016.

— Appears in Chapter 3.

e S. Dublish, V. Nagarajan and N. Topham, Cooperative Caching for GPUs, ACM
Transactions on Architecture and Code Optimization (TACO), 13(4), 39, Decem-
ber 2016.

— Appears in Chapter 4.

e S. Dublish, V. Nagarajan and N. Topham, Evaluating and Mitigating Bandwidth
Bottlenecks Across the Memory Hierarchy in GPUs, IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), Santa Rosa,
USA, April 23-25, 2017.

— Appears in Chapter 3.

1.4 Organization

The remainder of this thesis is organized as follows: Chapter 2 provides a background
about GPU computing. Chapter 3 presents a characterization of bandwidth bottlenecks
in the memory hierarchy of GPUs and evaluates the design space for cost-effective
scaling of the bandwidth resources. Chapter 4 evaluates the reuse patterns for general-
purpose applications and presents CCN, a Cooperative Caching Network for L1 caches
in GPUs. Chapter 5 presents Poise, a warp scheduling policy to balance multithread-

ing and memory system performance, consequently lowering the demand for shared

Chapter 1. Introduction 10

bandwidth resources in the memory hierarchy. Chapter 6 concludes the thesis by sum-

marizing the findings and contributions of this work as well as exploring the scope for

future work.

Chapter 2
GPU Computing

Consumer graphics hardware started gaining attention as early as the 1980s — at the
time used primarily in arcade and console gaming devices. In the initial years, industry
efforts were focused towards enabling 2D graphics through a variety of video cards
and graphic adaptors [29, 48, 156]. Later, during the 1990s, further progress in the
graphics industry ushered in an era of 3D graphics and revolutionized computer graphics.
Throughout that decade, graphics hardware companies such as ATI (now acquired by
AMD), 3Dfx and NVIDIA dominated most of the consumer graphics industry. With the
turn of the century, NVIDIA introduced GeForce 256 [42] — the first commercially
available Graphics Processing Unit or GPU. In 2006, after a series of architectural
revamps and modifications, NVIDIA introduced the G80 series GPUs. It featured the
Unified Shader architecture — an array of unified and similar compute hardware units in
a GPU, in contrast to traditional graphics pipeline units with specialized functions such
as rasterization and pixel shading [104] — adding momentum to the rise of general-
purpose computing on GPUs, often known as GPGPU. The success of GPUs was fuelled
further by the introduction of CUDA (maintained by NVIDIA) and OpenCL (maintained
by the Khronos Group) — the parallel computing platform and programming models
that bolstered the general-purpose ecosystem around GPUs. CUDA and OpenCL
enabled GPUs to be used pervasively by the high performance computing community
across different domains by allowing users to conveniently express the parallelism in
their applications using these programming platforms. As a result, the current generation
of GPUs have not only pushed the gaming industry forward by leaps and bounds, but
have also emerged as a cornerstone of high performance computing for a variety of
general-purpose application domains.

In this chapter, we delve into the finer details of modern GPU computing and provide

11

Chapter 2. GPU Computing 12

Grid Thread Block Warp Thread

s st s

<<
£€<<K<

Figure 2.1: CUDA program structure

the necessary background for the remainder of this thesis. Note that we restrict our
discussion to NVIDIA GPUs as these are arguably the most prevalent discrete GPUs in
the industry. However, as GPUs from other vendors feature similar architectural features,
memory system organization and programming models, we expect our observations to
be applicable to other GPU architectures as well. In the remainder of this chapter, we
first present the CUDA programming model in Section 2.1, followed by an overview of
a modern NVIDIA GPU architecture in Section 2.2.

2.1 Programming Model

In a typical CPU-GPU system with a discrete GPU, the CPU is referred to as the host
and executes the serial or modestly data parallel sections of the application, whereas
the GPU is referred to as the device and executes the highly data parallel sections
of the applications. CUDA — formerly an acronym for Compute Unified Device
Architecture — is the standard parallel computing platform and programming model
developed by NVIDIA for its GPUs [32]. Figure 2.1 depicts a typical program structure
in CUDA. A CUDA program consists of data parallel structures called kernels that
comprise tens of thousands of threads. The host CPU launches the kernel on the device
GPU as a multidimensional grid of threads. Within a kernel, the large number of
threads are organized into structured blocks of computation known as thread blocks.
A device-level hardware scheduler in the GPU schedules the thread blocks to the
different GPU cores for execution. The policy to schedule thread blocks on GPU
cores can have a considerable impact on performance and has been evaluated in prior
work [75, 96, 154, 155, 102].

The maximum number of thread blocks that can be co-scheduled on each GPU core

at a given time is governed by the occupancy constraints specified by the vendor on

Chapter 2. GPU Computing 13

various system resources such as registers and threads. Therefore, the number of thread
blocks available for multithreading is restricted by the demand for constrained resources
posed by each thread block. Nevertheless, such a policy accords dynamism to GPUs in
determining the number of thread blocks that can be scheduled concurrently on each
GPU core, instead of restricting it to a constant number. As a result, it grants users
the flexibility to examine the trade-off between a smaller number of thread blocks per
GPU core, where each thread block is allotted higher resources, and a higher number
of thread blocks per GPU core, where each thread block is allotted fewer resources.
Expert programmers try to optimize their programs in order to maximize resource
usage without significantly sacrificing the degree of multithreading available on each
GPU core present in form of thread blocks [118, 83]. In addition, several mechanisms
have been proposed to relieve the programmer from the burden of computing the best
trade-off between the number of thread blocks and the resources allotted to each thread
block [13, 134, 135, 152, 105, 14, 164, 159].

The different thread blocks in a kernel are executed independently and can be
scheduled in any order. While threads within a thread block can be synchronized using
a barrier synchronization primitive in CUDA called _ syncthreads (), threads across
different threads blocks cannot be directly synchronized using similar programming
primitives. However, different thread blocks can communicate and collaborate implicitly
through the global memory. In addition, synchronization across thread blocks can
generally be enforced through the CPU by terminating and relaunching the kernel at
the desired synchronization points. However, such coarse CPU-driven thread block
synchronization occurs at a significant cost of additional communication between the
host and the device [147]. Several recent proposals have discussed methodologies to
extend or improve the existing synchronization primitives in GPUs through schemes
pertaining to GPU barrier synchronization [41, 160, 147, 114, 163, 168] and scope
synchronization [122, 142, 6], among others.

Each thread block consists of several smaller group of threads called warps — the
smallest granularity for scheduling threads within a GPU core. The threads within
a warp execute in a Single-Instruction Multiple-Threads (SIMT) fashion where the
hardware functional units execute the same instruction across multiple threads of a warp
in lockstep before moving to the next instruction. Instructions executed by the hardware
are called SIMD instructions, i.e., Single-Instruction Multiple-Data. SIMD instructions
operate on a vector of data, instead of scalar data items. The length of the vector is
known as the SIMD width.

Chapter 2. GPU Computing 14

In the case of control flow instructions, such as conditional branches, threads within
a warp may take different execution routes after resolving their branch condition.
This phenomenon is referred to as warp divergence. In such a scenario, hardware
executes the divergent sets of threads sequentially until they converge and continue
lockstep execution. High levels of control flow divergence often sacrifices the benefits
of parallelism, and this has been addressed extensively in prior work [45, 113, 133, 39].
In most CUDA-enabled GPU architectures, warp divergence also prevents the divergent
group of threads from communicating and sharing data due to their sequential execution.
The recent Volta architecture, however, supports independent thread scheduling by
maintaining per-thread scheduling resources (such as the program counter), instead of
per-warp scheduling resources. This gives finer thread scheduling control and allows
divergent threads to execute instructions in an interleaved fashion, enabling fine-grained
communication and synchronization between threads within a divergent warp [108].
Volta still follows the SIMT execution model as the same instruction is executed by
all active threads in a warp at any point in time, albeit with more flexible interleaving

between divergent threads.

2.2 GPU Architecture

A typical GPU consists of several functional units organized as a set of highly multi-
threaded and pipelined cores that are referred to as Streaming Multiprocessors or SMs.!
Figure 2.2 depicts a system-level diagram of a typical GPU. Each SM comprises a
unified shader pipeline consisting of fetch, decode, issue, execution and write-back
stages. The fetch stage retrieves the warp instructions from the instruction buffers,
while the decode stage resolves the operands and their associated dependencies. The
dependency between operands is recorded through a scoreboarding mechanism. The
scoreboard tracks the read-after-write (RAW) and write-after-write (WAW) dependency
hazards within and across warps by reserving registers for the decoded destinations
that require updating. If a subsequent instruction reads or writes a reserved register, a
dependency is flagged, which is then resolved at the write-back stage on completion of
the pending memory operation. Figure 2.3 illustrates these stages diagrammatically in

greater detail. More architectural details can be found in [141].

'In this thesis, we use the terms “core” and “SM” interchangeably, when referring to GPUs.

Chapter 2. GPU Computing 15

SM SM SM SM

Figure 2.2: System-level architecture of a typical GPU

2.2.1 Warp Scheduling

Each SM consists of multiple hardware warp schedulers (not shown in the figures).
After the decode stage, a warp scheduler selects a warp from a pool of active warps
and issues them to the functional units, i.e., floating-point unit (FPU) or load-store unit
(LSU). A warp is termed active only when there exists a warp instruction that has all
the operands required for execution and the scoreboard detects no dependency hazard
with any outstanding memory operation. Once an active warp instruction is issued, it is
scheduled and executed in lockstep on the appropriate functional units, depending on the
instruction type. These functional units comprise multiple lanes of compute (floating-
point) and memory (load-store) pipelines. Furthermore, if the scoreboard detects a
dependency hazard with a pending memory operation, the corresponding warps are
descheduled and forced to stall. Such warps are referred to as inactive warps. The
inactive warps do not participate in multithreading until the pending memory operations
are completed. In such a scenario, the warp scheduler selects a warp from the pool of
active warps to replace the stalled inactive warp and allows continued execution, thereby
overlapping the latency of pending memory operations. When the pending memory
operations are completed, the missing operands are made available, thereby triggering
the write-back stage for pending memory instructions. As a result, the formerly reserved
registers are released and dependency hazards at the scoreboard are resolved. However,

in the event when no active warps are available, the functional units are forced to stall

Chapter 2. GPU Computing 16

T Instruction Cache Crossbar I
Injection Port .
Fetch Inst > L2 access queue L2 miss queug
Inst. Miss Queue FEIID—l ‘—PEIID—>
MSHR N
‘ VEIIDIjv to DRAM
Decode L1 Miss Queue — [EREE NN
ES MSHR
! g
MSHR g
N L1 3 L2 Bank
Issue > LSU | Data 2
Shared
| L1 Caches | Texture
FPU < EEED(—I from DRAM
SM L2 response DRAM response
! queue queue
Memory Partition iy

Figure 2.3: Baseline GPU architecture

and multithreading no longer hides the latency of outstanding memory operations. As a
result, memory latencies appear in the critical path and directly impact performance.
Memory-intensive applications are more susceptible to such a scenario due to the high
frequency of memory instructions that can potentially lead to a long latency memory

operation.

2.2.2 GPU Memory Hierarchy

Modern GPUs feature a memory hierarchy with impressively diverse memory units,
catering to a wide spectrum of request types supported by GPUs. We now explore the
different levels of the memory hierarchy and discuss some of their individual properties.
More details can be found in [141, 32].

Register Files. In each SM, multi-banked register files occupy the highest level in
the memory hierarchy to enable fast context switching between warps [113, 1, 111].
The register file is indexed by warp id and register id, and is used to store private data for
thousands of concurrent threads under execution. Typical modern GPUs, such as Kepler,
feature up to 65,536 32-bit registers per SM which amounts to 256 KB of register file
per SM. This is in stark contrast to traditional multiprocessors which feature only a few
hundred (or fewer) registers in the register file.

L1 Caches. The next level in the memory hierarchy is formed by the private caches
within the SM. These caches (enumerated below) include read-write memories such as
Shared Memory and L1 Data Cache, and read-only memories such as Constant Cache,

Texture Cache and Instruction Cache.

Chapter 2. GPU Computing 17

1. Shared Memory: The shared memory is allocated explicitly by the programmer
at thread block granularity and acts like a scratchpad for the programmer. The
shared memory data is private to the thread block for which it is allocated.
CUDA provides the _shared_ memory space specifier to declare and allocate
shared memory in the device code. Shared memory is heavily banked to allow
simultaneous access to data for all threads of a warp in a single cycle. However,
poor memory access patterns can lead to bank conflicts, thereby serializing the

accesses and slowing down the warps [50, 165, 68].

2. LI Data Cache: The L1 data cache is primarily used for caching global memory
accesses.” Global memory is declared in CUDA using the _device_ memory
space specifier and can be accessed globally by all threads of a grid. The scope of
global memory also extends to the host, and therefore host and device can transfer
data in the global memory space. Furthermore, the L1 data caches are non-
coherent and employ write-through, no-write-allocate policies for global memory
accesses. This implies that a write in the global memory space is performed
directly in the shared L2 cache, bypassing (on a write miss) or evicting (on a
write hit) the L1 data cache. However, GPUs support a weak memory consistency
model [40, 4], and therefore shared data in the remaining L1 data caches is not
invalidated upon a write, potentially allowing other SMs to continue reading stale
data from their respective L1 data caches. Therefore, to access the most recent
data in the global memory space, the programmer or the compiler must explicitly
bypass (and invalidate) the L1 data caches that can cache potentially stale data

and must read directly from the L2 cache.

In addition to global memory accesses, the L1 data cache also supports local
memory accesses. Local memory is private to each thread and is declared in
CUDA using the _1ocal_memory space specifier. The L1 data cache employs
a write-back, no-write-allocate policy for local memory accesses. Compilers
use local memory space for a thread when there are not enough registers in the

register file to store private thread data.

3. Constant Cache: The constant cache is used for caching constant memory ac-
cesses. The constant memory is declared in CUDA using the _constant__
memory space specifier. Constant memory is read-only memory and can be

accessed by all threads of a grid. Similar to global memory space, the scope

%In the remaining chapters, we refer to L1 data cache simply as L1 cache, unless otherwise specified.

Chapter 2. GPU Computing 18

for constant memory extends to the host, allowing host and device to transfer
read-only data in the constant memory space. Constant memory is typically used
when all threads of a warp read from the same memory location and the data is

not expected to change over the course of execution.

4. Texture Cache: The texture cache is used for caching texture memory accesses.
The texture memory is a read-only memory that provides a global scope and
is assigned using device functions [32]. Typically, texture memory is used in
scenarios when threads of a warp issue reads to contiguous memory addresses,

exhibiting high spatial locality.

5. Instruction Cache: The instruction cache is a read-only cache accessed during the
fetch stage by each warp. A warp that has a valid instruction in the instruction
cache fills the instruction buffer and eventually proceeds to the decode stage.
However, in case of a miss in the instruction cache, a memory request is generated
and the corresponding warp is descheduled if there are no more instructions to be

decoded in the instruction buffer for that warp.

L2 Cache. The private caches are backed by a shared L2 cache that adopts a
write-back, write-allocate policy for L2 write requests. As shown in Figure 2.3, L2
cache is organized into multiple banks. A group of L2 banks form a memory partition
sharing a common channel to the off-chip DRAM. The requests to the L2 cache enter
the memory partition through the L2 access queues. Upon a read hit, the L2 cache line
is read out through the data port in the L2 cache into the L2 response queues. On a
read miss, a cache line is reserved in the L2 cache and a read to the DRAM is issued
through the L2 miss queue. When a fill request is received from the DRAM through the
DRAM response queue, the reserved cache line is filled and a subsequent fill request is
generated for the L1 cache, if required.

Interconnection Network. Each L2 cache bank communicates with the cores
through a crossbar interconnection network. There are separate interconnection net-
works for the request path (cores to L2 cache) and the response path (L2 cache to cores).
The request path carries read requests and write requests, whereas the response path
carries read responses and write acknowledgements. The crossbar transfers packets
at the granularity of flits. In an uncongested memory system, .2 cache has an access
latency of around 120 cycles from the L1 cache for non-texture accesses [141]. How-
ever, congestion and queueing delays due to bandwidth limitations can considerably

increase the latency to access the L2 cache and DRAM. For instance, due to large cache

Chapter 2. GPU Computing 19

line size, it often takes around 4-5 cycles just to push a single cache line through the
crossbar router at 32-byte flit granularity. As a result, for memory-intensive applications
that present a high demand on the interconnect, the cumulative queueing delay to push
multiple cache lines can be considerably high.

Graphics DRAM. The shared L2 cache is further backed by an off-chip graphics
DRAM or GDDR that has an additional access latency of around 100 cycles, excluding
the arbitration delays within the DRAM. Each memory partition has a memory channel
with an independent DRAM command scheduler queue where the DRAM requests wait
until the corresponding memory access commands are scheduled to the DRAM. DRAM
scheduler employs a FR-FCFS (First-Row First-Come-First-Serve) scheduling policy
to select a new request from the scheduler queue. Furthermore, each memory partition
1s associated with multiple DRAM chips, where each DRAM chip is organized into
multiple banks. Multiple banks of a DRAM chip share a common bus that determines
the peak memory bandwidth of the DRAM. Values for the above DRAM parameters

used in this thesis are listed in Table 3.1 in the next chapter.

2.2.3 Memory Coalescing

Bandwidth is a critical resource in throughput-oriented architectures such as GPUs.
Therefore, GPUs employ several mechanisms to reduce the bandwidth demand on the
memory hierarchy. One such important technique is known as memory coalescing. As
threads in a warp operate on a vector of data, each thread can potentially generate an
independent memory request. When such threads generate highly regular memory
accesses, i.e., to consecutive words in the memory, all accesses span across a few cache
lines only. In such a scenario, the load-store unit coalesces the memory requests that fall
within the same cache line into a single request to the memory hierarchy. For instance,
when a warp with 32 threads access 4-byte words starting from a 128-byte aligned
address, all the addresses fall within a single cache line, assuming 128-byte cache line
size. As a result, 32 threads of a warp generate a single, highly coalesced memory
request. This phenomenon is known as memory coalescing. Such regular access patterns,
combined with memory coalescing, improve memory bandwidth by allowing multiple
loads to be serviced by fewer memory requests. In a different scenario, where threads
access words at 128-byte offset, warp generates 32 different memory requests — one
for each thread of the warp — significantly depleting memory bandwidth. Such access

patterns are known to exhibit high memory divergence [33, 136, 60, 84]. Programmers

Chapter 2. GPU Computing 20

often try to optimize the memory access patterns to reduce memory divergence in order
to maximize bandwidth [83].

After coalescing memory requests in the load-store unit, GPUs exploit another
opportunity to reduce the bandwidth demand on the memory hierarchy. This is done
through Miss Status Holding Registers (MSHRs) in the L1 and L2 caches. MSHRs
are fully-associative arrays and are used to track outstanding memory requests. For
every cache miss in progress, an MSHR entry is allocated in the corresponding cache.
Subsequent accesses to the pending cache lines are merged into an existing MSHR
entry that corresponds to the same address. Therefore, it eliminates redundant memory
requests to the lower levels of the memory hierarchy for cache lines that are already
being fetched. In other words, for every miss at the L1 and L2 caches, corresponding
MSHR entries are searched for an outstanding request for the same cache line. If no
existing entry is found, a new MSHR entry is created to track the new cache miss in
progress. However, if an entry is found in the MSHRs, the new cache miss is merged
with an existing MSHR entry that corresponds to the same cache line. Once the pending
memory request is serviced, the associated MSHR entries are freed and warps associated
with all the merged requests are serviced. Limiting the number of MSHR entries also
limits the maximum number of memory requests that can be in-flight at any time in the
memory system. Therefore, MSHRs determine the peak bandwidth demand that each

level of the memory hierarchy can pose on the lower levels of the memory hierarchy.

Chapter 3

Evaluating and Mitigating Bandwidth

Bottlenecks

In comparison to the traditional multiprocessors, GPUs present significantly different
requirements to the memory system. This is largely because of the throughput-oriented
nature of GPUs — a marked departure from the single-threaded and latency-oriented
processors. In GPUs, a large number of requests are made to each level of the memory
hierarchy in order to sustain the enormous parallelism in GPU cores. However, with
increasing off-chip bandwidth with newer memory technologies (such as HBMs) on
one side, and increasing number of streaming multiprocessors on the other side, the
intermediate cache hierarchy appears to be under-provisioned to handle such high
volumes of memory traffic. As a result, the bandwidth bottleneck — traditionally
limited to the off-chip memory — is distributed across the entire memory hierarchy,
including the cache hierarchy. This motivates us to further evaluate and understand the
bandwidth bottlenecks in GPUs so that we can provision the memory hierarchy with

adequate bandwidth resources and ensure a well-performing memory system.

3.1 Overview

In this chapter, we aim to characterize the severity of the bandwidth problem posed
by the three levels of the memory hierarchy, viz., private L1s, shared L2 and off-chip
memory, and also characterize the role of their peripheral network elements such as
interconnects and buffers. We show that due to bandwidth bottlenecks, there is severe
congestion between the L1 and L2, as well as between the L2 and off-chip memory.

As discussed in Chapter 1, such high levels of congestion lead to increased memory

21

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 22

| Stall m— L2-AHL —— AML —— |

100
90
80
70
60
50
40
30
20
10

800
700
600
500
400
300
200
100

Issue Stall (%)
Latency

Figure 3.1: Issue-stall cycles, Average Hit Latencies to L2 (L2-AHL) and Average Memory

Latencies (AML) for memory-intensive applications.

latencies, which has three major implications. Firstly, in memory-intensive applications,
due to insufficient computation to mask high memory latencies, such latencies appear
in the critical path of system performance. Secondly, high latencies of outstanding
miss requests lead to prolonged contention of cache resources such as Miss Status
Holding Registers (MSHRs) and replaceable cache lines. This effect increases the
memory latencies even further as succeeding requests get serialized and have to wait
for outstanding misses to complete and relinquish the resources. And thirdly, back
pressure from a congested lower level further throttles the cache pipeline and prevents
it from operating at peak throughput, exacerbating the bandwidth limitation in the
cache hierarchy. A combination of the above factors force the cores to stall, leading to
performance degradation. In Figure 3.1 we show that a set of representative memory-
intensive applications, run on a simulated GTX 480 GPU, exhibit high average memory
latencies (AML; 452 cycles on average) and spend a considerable fraction of application
run time in a stalled state (62% on average) waiting for memory operations to complete.
Additionally, high average L2 hit latencies (L2-AHL; 303 cycles on average) indicate
that there is considerable congestion between the private L1 and the shared L2 cache,
and therefore suggests that the high average memory latencies are due to bandwidth
limitations in both the cache hierarchy and to off-chip memory.

In order to reduce congestion in the memory system, we explore several design
choices at each level of the memory hierarchy and evaluate their efficacy in alleviating
the bandwidth bottleneck. We conduct a design space exploration and show that solving
the problem in isolation, at specific levels of the memory hierarchy, can give sub-

optimal results and can even be counter-productive, only creating even more congestion

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 23

elsewhere in the memory system. For instance, we observe that to prevent throttling
of the L1 cache, increasing the L1 bandwidth by increasing the number of MSHR
entries to handle more outstanding misses can lead to performance degradation due
to even higher congestion between L1 and L2. We verify this observation on a real
GTX 480 GPU chip by increasing the core frequency, effectively increasing the L1
request rate, and observe a performance degradation (detailed discussion in Section 3.6).
On the other hand, matching the increased bandwidth demand of L1 at the L2 cache
significantly improves performance, and this even exceeds the performance achieved by
a memory system with baseline cache hierarchy and High Bandwidth Memory (HBM)
DRAM. Therefore, in order to efficiently solve the bandwidth bottleneck, we show that
it is imperative to address the bandwidth demands of different memory levels in tandem
and provide a synergistic solution. Additionally, we use the insights developed in this
chapter to perform a cost-benefit analysis and propose efficient ways to mitigate the
bandwidth bottlenecks at different levels of the memory hierarchy. Overall, this chapter
expands the understanding of the bottlenecks across the GPU memory hierarchy and
serves as a guide for architects and programmers to optimally scale bandwidth of the
memory hierarchy and write bandwidth-sensitive programs, respectively.
Organization: The remainder of this chapter is organized as follows. Section 3.2
presents the evaluation methodology and infrastructure adopted in this chapter. Sec-
tion 3.3 motivates the need for this study by showing that the bandwidth bottlenecks
across the memory hierarchy in GPUs breach the latency tolerance property of GPUs by
causing congestion. Section 3.4 quantifies the congestion levels across the GPU memory
hierarchy and explores the architectural causes. Section 3.5 present the various design
choices in the memory system to mitigate the bandwidth bottlenecks, derived from the
characterization of congestion across the memory hierarchy. Section 3.6 evaluates the
efficacy of mitigating the bandwidth bottlenecks through guided design space explo-
ration. Section 3.7 identifies cost-effective configurations of the memory hierarchy and
shows that synergistic scaling of L1 and L2 cache resources can reasonably match or
even exceed the benefits of an HBM DRAM, leading to a performance improvement of
up to 29% on average with a minimal area overhead of 1.5%. Section 3.8 discusses the
relevant related work. Section 3.9 concludes the chapter by summarizing the findings

and results.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 24

Table 3.1: Baseline architecture parameters for GPGPU-Sim

Parameter Value
Core 15 SMs, Greedy-then-oldest (GTO) scheduler
Clock frequency Core @ 1.4 GHz; Crossbar/L2 @ 700 MHz
Threads per SM 1536
Registers per SM 32768
Shared Memory 48 KB
L1 Data Cache 16KB, 128B line, 4-way, LRU, write-evict,
32 MSHR entries, 8-entry miss queue
Interconnect Crossbar, Fly-topology, 32B flit size
L2 Cache 768 KB, 128B line, 8-way, LRU, write-back,

12 banks, 32 MSHRs, 8-entry miss queue,
32B data port width, 8-entry request queue
DRAM GDDRS5 DRAM, Command clock 924 MHz, FR-FRCFS
384 bits net buswidth, 6 Memory Partitions,
2 DRAM chips/partition, 32-bits buswidth/chip,
8 bytes burst length, 16 DRAM banks/chip
DRAM Timing Constraints CCD =2, RRD=6, RCD=12, RAS=28, RP=12,
RC=40, CL=12, WL=4, CDLR=5, WR=12

3.2 Background

In this section, we describe the evaluation framework used in the rest of the chapter.

This includes the target architecture, simulation framework and target workloads.

3.2.1 Baseline Architecture

In this study, we consider a baseline GPU architecture similar to NVIDIA’s Fermi
architecture [115, 141]. Notably, as the organization of the memory hierarchy is fairly
consistent across different architectures, we expect our observations to be applicable to

Kepler and Maxwell as well.

3.2.2 Simulation Framework

We model a GTX 480 Fermi GPU on a cycle-accurate simulator GPGPU-Sim (v3.2.2) [10]
with the baseline architectural parameters listed in Table 3.1. We use GPUWattch [98]
to compute the area and power in our experiments. GPGPU-Sim shows a high perfor-
mance correlation of over 97% against a Fermi GPU [141] and has been widely used in

prior works [132, 1, 121, 139, 5], and therefore reliably represents our findings.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 25

Table 3.2: List of workloads. P..: Speedup with infinite bandwidth memory system; Pogau:

Speedup with a baseline cache hierarchy and infinite bandwidth DRAM.

‘ # ‘ Suite Benchmark Abbreviation ‘ P ‘ Poram ‘
1 | MapReduce Matrix Multiplication mm 4.90 | 1.01
2 Parboil Lattice-Boltzman Method Ibm 3.40 | 1.87
3 | MapReduce Similarity Score ss 3.23 | 1.00
4 Rodinia Nearest Neighbour nn 3.11 | 1.84
5 Rodinia Hybrid Sort hybridsort | 3.10 | 1.24
6 Rodinia Computational Fluid cfd 3.08 | 1.06
7 | MapReduce Page View Rank pvr 2.89 | 1.01
8 Rodinia Breadth-First Search bfs 2.84 | 1.00
9 Rodinia Particle Potential lavaMD 2.70 | 1.00
10 Rodinia Stream Cluster sc 2.70 | 1.13
11 Parboil Breadth-First Search bfs’ 2.10 | 1.00
12 | MapReduce Inverted Index ii 1.98 | 1.00
13 Rodinia Speckle Reduction sradvl 1.51 | 1.19
14 Rodinia Speckle Reduction sradv2 1.49 | 1.08
15 Rodinia Needleman-Wunsch nw 1.43 | 1.09
16 Parboil PDE Solver stencil 1.23 | 1.20
17 Rodinia Wavelet Transform dwt2d 1.20 | 1.14
18 Parboil Sum of Absolute Differences sad 1.16 | 1.09
19 Rodinia Tracking Microscopy leukocyte 1.08 | 1.00

Average 237 | 1.15

3.2.3 Workloads

For the purpose of this study we use applications from three major general-purpose
benchmark suites, viz., Rodinia (v3.0) [27], MapReduce [57] and Parboil [146]. In
Table 3.2, we list the memory-intensive benchmarks sorted by the speedup shown on an
infinite bandwidth memory system (P..). We also show the performance improvement
observed on a memory system with baseline cache hierarchy and an infinite bandwidth
DRAM (Pyrav). We discuss the observations regarding P, and Py, in detail in
Section 3.3.2.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 26

cfd
dwt2d
leukocyte

_Performance plateau

IPC (normalized to baseline)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
L1 miss latency

Figure 3.2: Performance variation with increasing L1 miss latency.

3.3 Motivation

In this section, we motivate the need to investigate the bandwidth bottlenecks in GPUs

and discuss the potential benefits of mitigating congestion.

3.3.1 Limits of Latency Tolerance in GPUs

Multithreaded processors employ massive thread-level parallelism (TLP) to hide mem-
ory latencies. As discussed in Section 2.2.1, upon encountering an instruction that is
waiting on a long latency memory operation, the corresponding warp is descheduled
and an active warp (if any) is scheduled, thereby overlapping the latency of mem-
ory operation. Therefore, GPUs are usually tolerant to memory latencies. However,
memory-intensive applications often run into memory misses causing all of the warps
to stall due to pending memory instructions. In such a case, miss latencies get exposed
due to lack of sufficient overlapping computation, and therefore lie in the critical path,
adversely impacting performance.

Figure 3.2 shows the impact of memory latencies on performance, using a represen-
tative set of benchmarks from Table 3.2. In this study, we modify the memory hierarchy
of the baseline architecture (described in Table 3.1) so that all the L1 miss responses
are returned with a fixed and pre-determined latency that is varied in the simulator and
is represented on the x-axis. The resultant performance is plotted on the y-axis which is
normalized to the performance of the baseline architecture.

We observe that for most benchmarks such as nn, sc and [bm, the performance

remains fairly tolerant to modest L.1 miss latencies. This is because the cores are

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 27

able to effectively overlap such latencies with the execution of independent operations,
in line with the philosophy of multithreaded architectures. However, when memory
latencies are higher, there is a direct impact on performance, indicating that such high
latencies lie in the critical path. For instance, IPC for nn reduces modestly from 3.3 x
to 3.03x (normalized to baseline IPC) on varying the miss latencies from 0 to 250
cycles. However, further increasing the L1 miss latencies rapidly degrades performance,
reducing the IPC by 1.9x in the next 250 cycles. Furthermore, other benchmarks
such as leukocyte and dwt2d are sensitive to even lower latencies, indicating inefficient
thread-level parallelism.

We make two major observations about the baseline memory latencies, i.e., the point
on the x-axis where the performance curve intercepts the baseline IPC of 1x (shaded
region), and therefore matches the average memory latency of the baseline architecture.
First, the baseline memory latencies are significantly higher than the latencies of
performance plateau (or peak performance) for most benchmarks. Therefore, the
baseline performance is well beyond the effective operating range of latency tolerance.
And second, the baseline memory latencies are also significantly higher than the ideal
access latencies of L2 (120 cycles) and DRAM (additional 100 cycles via L2). This
suggests that there is considerable congestion in the memory system since traversing the
memory system takes significantly higher latencies than the minimum memory access
latencies of L2 and DRAM. In summary, the above results indicate that there exists a
significant opportunity to improve performance by reducing the latencies incurred due

to congestion in the memory hierarchy.

3.3.2 Performance Impact of Reducing Congestion

In Table 3.2, we have shown the speedup obtained with an infinite bandwidth memory
system (P.,) and observed an average performance improvement of 2.37 x. In such a
case, L1 miss requests do not suffer any congestion-related slowdown in the memory
system and only incur the minimum memory access latencies of 120 cycles to L2 (for
non-texture accesses) and another 100 cycles to off-chip memory for L2 miss requests.
Therefore, the speedup can be mapped to Figure 3.2 between the latency range of 120
to 220 cycles, with the average memory latency depending on the L2 miss rate. We also
show the performance improvement with an infinite bandwidth DRAM appended to a
baseline cache hierarchy (Ppray). In such a case, L1 miss requests suffer congestion-

related slowdown only in the cache hierarchy and access the off-chip memory with

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 28

[(025%) m [25-50%) =™ [50-75%) = [75-100%) = 100% m |
;

0.8

06

04 -

Usage Lifetime
(L2 access queue)

02 r

0

P By S Y B O O G b % On Y S S W S % S5 BT

% %, 2 J@/ CORINGIACS ¢’0 & oy V%, (2 @”oq/{"’ v 040 LG
% 70) 7 R y (o)
e Y%

Figure 3.3: Occupancy levels in L2 access queue during the usage lifetime

a constant 100 cycle latency without incurring any congestion or timing limitations
in the DRAM. In this case we notice an average performance improvement of only
1.15x, which is considerably lower than the average P, which includes an infinite
bandwidth to both caches as well as DRAM. A comparatively lower performance
improvement for Py, suggests that the existing bandwidth bottleneck in the cache
hierarchy plays a crucial role in increasing the miss latencies, thereby slowing down
memory-intensive applications. In the subsequent sections, we investigate the cause of
such high congestion in the memory system, focusing not only on the off-chip memory
but also on the cache hierarchy since it is critical for performance. We also analyse
the finer implications of congestion that cause performance degradation. Using these
insights, we explore the opportunities to reduce the congestion-related latencies and

show how they translate to performance improvements.

3.4 Dissecting the Bandwidth Bottleneck

In a typical memory hierarchy, the bandwidth demand tapers down the memory sys-
tem [148]. In principle, this is because each level filters the bandwidth demand to the
lower level, and therefore the lower levels require only a fraction of bandwidth of the
higher levels. However, if the bandwidth provided by the lower level is insufficient to
service the bandwidth demand of the higher level, requests queue up in the memory
system due to the bandwidth skew between the adjacent levels of the memory. This
can lead to congestion in the network between the two levels, and as a consequence,
requests in the higher level will have to wait for longer durations to get serviced.

In Figure 3.3 and Figure 3.4, we quantify the congestion between adjacent memory

levels through an occupancy histogram of access queues to L2 and DRAM respectively.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 29

[(025%) m [25-50%) =™ [50-75%) = [75-100%) = 100% mm |
;

0.8

06

04 -

02 r

Usage Lifetime
(DRAM access queue)

0

P By S Y B O O G b % On Y S S W S % S5 BT

BT T T 0T Ty T R e
% 0 7R 7 <
% Y%

Figure 3.4: Occupancy levels in DRAM access queue during the usage lifetime

The stacked bars for each benchmark indicate the occupancy levels in the access queue,
aggregated throughout the usage lifetime of the queue. We define usage lifetime as the
time when the queues are occupied by at least one request. The occupancy histogram of
the buffers between the adjacent memory levels serve as a measure of the bandwidth
skew, indicating the degree of congestion between the two levels. In Figure 3.3 we note
that on average, the access queues to L2 are full (indicated by the 100% occupancy
bar in black) for 46% of their usage lifetime. Such high congestion aligns with the
observation of high L2 access latencies. Similar to the congestion between L1 and L2,
high bandwidth demand of L2 misses and low DRAM service rate causes the DRAM
access queues to get full leading to congestion between the two levels. In Figure 3.4 we

note that on average, DRAM access queues are full for 39% of their usage lifetime.

3.4.1 Implications of Congestion

Limited bandwidth to traverse the memory system and queuing delays due to congestion
lead to high memory latencies. Such high latencies are critical to system performance
and cause performance degradation (as shown in the post-plateau region in Figure 3.2).
In this subsection, we delve further into the finer implications of high latencies (and
congestion) and show how it leads to performance degradation. We summarize the
results in Figure 3.6.

Data and Fetch Hazards: When a warp encounters an instruction that is waiting on
a pending memory (or compute) operation due to a data dependency, it is descheduled
and no longer participates in thread-level parallelism. This condition is known as a
data hazard. Once the pending memory (or compute) operation completes, the data
dependency is resolved and the warp is allowed to resume execution. Since floating-

point operation latencies are fairly small, the majority of data hazards are caused by

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 30

pending loads [82]. When all warps are descheduled due to data hazards, which is often
the case in memory-intensive applications, the core is forced to stall. In such a scenario,
memory latencies contribute directly to stall cycles and govern how soon a warp can be
released from a data hazard to continue execution.

Since instruction cache misses share the congested memory system with irregular
data misses, high memory latencies drain the instruction buffers, thereby descheduling
the warp at instruction fetch. This is known as a fetch hazard. High instruction cache
misses can cause the fetch buffer to drain for all warps. This causes the core to stall
until the instruction misses complete and the warp resumes decoding.

Structural Hazards: High miss latencies can lead to prolonged contention for
limited cache resources that are used to maintain the context of outstanding miss
requests. This prevents the cache from sending new miss requests to the lower level
in the memory system. This condition is known as a structural hazard. This further
adds to the miss latency since the new misses get serialized, as they have to wait for
the pending requests to complete and relinquish the resources. A structural hazard can
occur due to a lack of free MSHR entries in a cache to hold the context of a new miss
request. Alternatively, since Fermi employs an allocate-on-miss policy for reserving
new cache lines, a structural hazard can also be caused due to a lack of replaceable
cache lines in a cache set if all cache lines are reserved by pending miss requests.

Memory Back Pressure: In a congested memory system, due to the inability of
network queues to accept new requests, preceding queues get full. This cascading
effect of congestion percolates up to the higher levels of the memory hierarchy and
is known as memory back pressure. When memory back pressure reaches the higher
level cache, it manifests as a structural hazard due to a lack of free entries in cache miss
queues, and therefore prevents the cache from issuing a new miss request. For instance,
back pressure from slow off-chip memory fills up the DRAM scheduler queue, in turn
causing the L2 miss queues to get full. This leads to a structural hazard in the L2 cache
as it cannot issue a new miss, thereby stalling the entire L2 cache pipeline. The back
pressure eventually percolates up to the L1 cache and throttles core performance.

Discussion: Apart from further increasing the miss latencies, structural hazards
(due to lack of cache resources or back pressure) have the following two major effects.

o Increased hit latencies. As structural hazards stall the cache pipeline, they prevent
the succeeding requests from accessing the cache even if such requests are cache hits.
This results in higher latencies for cache hits.

e Restricted parallelism on cores. A structural hazard in the load-store unit can

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 31

MSHR Size: 2
e @ @ @ <« lsuestdl > @ @ ® .
. o FILL - FILL - . . . AL
MemOp . MISS . MISS. MISS. HIT
MSHR - CO @0 00 00: 80: 0000 @0 @0 : @0 00 @0 -0
Mem Fetchi 1 r
ALU Op : : : _
Cycles(ty ~ 1 . 2 . 3 . 4 .5 . 6 . 7 . 8 .9 . 10 . 11 12 . 13
MSHR Size: 2+ Instruction Stream
w ©® @ ® ©@ ® @ woomws
: : : : : " HLL - FALL - FLL - ® 102, [0x0200] Mmiss
MemOp . MISS . MISS . MISS . HIT . I I I ® LDr3,[0x0300] MISS
MSHR . GOD -@O0 - @80 - 000 - @00 - @00 - OO0 - CO0 - CCO|@ LD r4, [0x0400] HIT
Menm Fetch- ; . . : . . : ' ® wmuLte7, 16,15
ALU Op :
Cycles(t) . 1 . 2 . 3 . 4 .5 . 6 . 7 . 8 .9

Figure 3.5: lllustrating the effects of structural hazards

cause all warps to stall when they attempt a memory instruction. This prevents the
independent instructions in the instruction stream from getting issued, as the preceding
memory instructions are waiting for the structural hazard to resolve, resulting in a false
dependency. This serialization of memory and compute instructions prevents the core
from hiding any further memory latencies, and thus performance suffers.

In Figure 3.5, we illustrate the above two scenarios with the help of an example.
In the first case, we assume an MSHR with two entries, thereby allowing only two
outstanding misses. Whereas in the second case, we assume a higher number of MSHRs
that do not pose a structural limitation. For the sake of simplicity, we assume 6 cycles
memory latency for an L1 load miss and 4 cycles for an ALU operation. In the first
case, upon encountering the first two load misses, i.e., @ and @, the MSHR gets full
and can no longer accept any more misses. Since (@) is also a miss, it encounters a
structural hazard and therefore stalls the L1 cache pipeline, in turn stalling the load-
store unit (LSU). A succeeding cache hit in @ needs to wait to access the L1 cache
as there is a blocking @) waiting for prior misses to relinquish the MSHR resources.
Therefore, @ gets serialized with the outstanding misses leading to a higher hit latency
of @ Additionally, a successive multiplication instruction, @, needs to wait in the
instruction queue as the previous instruction from the same warp is pending at the issue
stage. This structural dependency forces the execution units to remain stalled despite an
independent multiplication instruction in the instruction stream. Therefore, @ proceeds

with the hit only at r = 8, after the response for the first load relinquishes an MSHR

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 32

[data-MEM mm data-ALU == str-MEM =2 str-ALU fetch &3 |
£ 100 — =
c
i<} 80
5
o)
= 60
R
2 wf m
©
2 20 - 7
3
4 0 .
= D b S % B 0 O G B S B 7 Sk Sa Y Sk O S B, 9,
% 2 B o T T L 5 S, 0, T R Ny L
2 b e% %, %y 2y 400 G
% %

Figure 3.6: Issue-stall cycle distribution depicting stalls due to data hazards (data-MEM
and data-ALU), structural hazards (str-MEM and str-ALU) and fetch hazard (fetch).

entry and unblocks the LSU. Thereafter, multiplication begins at # = 9 completing the
execution at t = 12. In contrast, in the second scenario with no structural hazards, all
independent instructions are issued successively. @ results in a hit at # = 4 and ALUs
begin computation at t = 5, completing the execution at # = 8. Note that in real systems,
the miss latencies exceed hundreds of cycles, thereby magnifying the effect of such
structural hazards.

Summary: In Figure 3.6, we demonstrate the distribution of the core’s issue-stall
cycles and attribute the cause of stall to one of the following reasons: data hazard due
to a pending memory (data-MEM) or compute (data-ALU) operation; structural hazard
due to resource contention in memory unit (str-MEM) or compute unit (str-ALU); and
fetch hazard due to lack of instructions in the fetch buffer (fetch). As different warps can
encounter different hazards in the same cycle, we consider a stall cycle as a data hazard
when no warp can be issued due to existing data dependencies and the corresponding
functional units do not pose a structural limitation for at least one warp. Similarly, a
stall cycle is considered as a structural hazard when at least one warp, without any
data dependencies, can be issued but is forced to stall due to resource contention in
the corresponding functional units. We note that structural hazards from the memory
stage form a major portion of the stalls with an average of 71% of issue-stall cycles.
Data hazards due to pending memory instructions and fetch hazards contribute to 15%
and 8% of issue-stall cycles on average, respectively. On average, data and structural
hazards due to arithmetic units form very small portions of the issue-stall cycles, i.e.,

5.5% and 0.5% respectively.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 33

100

80

60

40

20 |

DRAM bandwidth efficiency (%)

B, S % B, C O b b, S G T S Su B, Sk O 8 &
G % % By % % % By % T %, %, e %, Y% By Ty
%, %) % o %
0 Y%

Figure 3.7: DRAM bandwidth efficiency

3.4.2 Causes of Congestion

In the previous sections, we observed that there is high congestion across the mem-
ory hierarchy due to distributed bandwidth bottlenecks, which leads to performance
degradation. In order to understand the design space for mitigating congestion, we now
explore the detailed causes of congestion by analysing each memory level in detail.

Off-chip Memory: Off-chip memory has been studied widely in the context of band-
width utilization [112, 79]. DRAM timing constraints, such as activate and precharge
delays, prevent DRAM from operating at peak throughput. Such constraints lead to low
bandwidth efficiency in the DRAM, i.e., the ratio of time when DRAM is transferring
data on the memory bus to the time when there is at least one pending request in the
DRAM scheduler queue. Therefore, a bandwidth efficiency of 100% would mean that
the DRAM is always operating at peak throughput. As shown in Figure 3.7, in our
experiments we observe a low average bandwidth efficiency of 41% and a maximum of
65% for stencil.

To improve bandwidth efficiency, several schemes have been proposed such as
improving row-buffer locality [169], bank-level parallelism [112] and prioritizing read-
over-writes [131]. For instance, as the overhead of opening a new row is high, reordering
requests to access an already opened row leverages row-buffer locality, thereby improv-
ing DRAM throughput. Bank-level parallelism is exploited by concurrently accessing
different banks in a DRAM chip, thereby masking the timing constraints across banks.
Prioritizing read requests over writes minimizes the performance critical latencies of
reads by trading off write latencies as they are not timing critical.

L2 Cache: Since L2 cache interacts with both DRAM at the lower level and L1
cache at the higher level, a myriad of factors can clog the L2 cache. Firstly, structural

hazards due to a lack of MSHRs or non-replaceable cache lines can block the L2

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 34

\ bp-ICNT port cache 3 mshr ——3 bp-DRAM =3 \
100 =
c ¥
2 80 - .
>
2
= 60
R
a
= 40 -
o
()
o~ 20
- 71
0 ..
S b Y % % % G % %7 % % % % 9, %, 4, I
% K %, 0. %y & %, O
%, o) 7 e A %,
0,7 %

Figure 3.8: L2 stalls due to back pressure from interconnect (bp-ICNT) and DRAM
(bp-DRAM) and contention on L2 data port, cache lines and MSHRs.

pipeline. Secondly, memory back pressure due to congestion in the DRAM access
queues can stall the L2 miss queue, creating another structural hazard at the L2 cache.
Thirdly, a busy L2 data port, due to an ongoing cache line fill from DRAM or an
ongoing read of an L2 cache line, can cause port contention, forcing the subsequent
L2 hits to wait before another cache line can be read. And finally, as L2 responses are
injected into the crossbar at the granularity of flits (or network packets), it can take
several cycles to inject an entire cache line. This forces the L2 responses to wait for
long durations in the L2 response queue, eventually asserting back pressure on the L2.

In Figure 3.8 we quantify the L2 cache stalls due to the above factors. We note
that on average, structural hazards due to a lack of MSHR entries and replaceable
cache lines contribute to 3% and 8% of L2 cache stalls. Memory back pressure from
DRAM contributes to 35% of total stalls, whereas L2 data port contention leads to
12% of stall cycles on average. Back pressure from L2 response queues due to slow
crossbar injection rate leads to 42% of L2 stalls on average, and is thus the main cause
of congestion at the L2 cache.

L1 Cache: We perform a similar analysis for L1 cache to determine the principal
factors that stall the L1 cache pipeline. L1 cache can stall due to structural hazards
on MSHRs as well as due to non-replaceable cache lines, similar to L2 cache. Also
structural hazard due to back pressure from L2 can stall the L1 cache pipeline. In
Figure 3.9 we quantify the impact of such parameters. We note that on average, MSHR
and cache line contention contribute to 41% and 11% of total L1 stalls and L2 back
pressure is responsible for 48% of L1 stalls. Therefore, back pressure from L2 appears
as the major cause in throttling the L1 cache, followed by MSHR contention and cache

contention.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 35

80

60

40 -

L1 Stall Distribution

20
|-

S Y Sk O S B, A,
oL YL O, 0, Yy
7 R y 9,/
(J

Figure 3.9: L1 stalls due to contention on cache lines and MSHRs, and back pressure
from L2 cache (bp-L2).

Summary: The above discussion provides insight into the reasons behind the stalls
in the memory system, and therefore serves as a guiding tool in adjusting the design to
best mitigate high congestion between different levels of the memory hierarchy. We
also observe the relative importance of parameters across caches. For instance, we note
that the scarcity of MSHRs in L1 caches has a huge impact as they contribute to 41% of
L1 stalls on average. On the other hand, MSHRs in L2 do not block the L2 cache as
they contribute to only 3% of L2 stalls. We also note that back pressure contributes to a

significant proportion of stall cycles at both L1 and L2 caches.

3.5 Consolidating the Design Space

In this section, we use insights from the above analysis to consolidate the design
parameters that can be effective in mitigating congestion in the memory hierarchy. In
the previous section, we observed that stalls at different levels of the memory hierarchy
prevent caches (and cores) from operating at peak throughput. However, removing
all such stalls and operating at peak throughput may not always alleviate congestion
as the peak throughput itself can be a limiting factor. Therefore, we classify the
microarchitectural parameters into the following two categories:

1) Type ‘=": Parameters that minimize stalls, allowing for the caches and cores to
operate at peak throughput.

2) Type ‘+’: Parameters that increase the peak throughput.

In the following subsections, we identify such parameters for the above categories

and summarize our architectural design space in Table 3.3.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 36

Table 3.3: Consolidated design space showing baseline, scaled (4 x) and cost-effective

configurations.
Design Parameter ‘ Type ‘ Baseline value | Scaled value (4x) | Cost-effective
(a) DRAM
Scheduler queue = 16 entries 64 entries 16 entries
DRAM Banks = 16 banks/chip 64 banks/chip 16 banks/chip
Bus width + 384 bits 1536 bits 384 bits
(b) L2 Cache
L2 miss queue = 8 entries 32 entries 32 entries
L2 response queue = 8 entries 32 entries 32 entries
MSHR = 32 entries 128 entries 32 entries
L2 access queue = 8 entries 32 entries 32 entries
L2 data port + 32 bytes 128 bytes 32 bytes
Flit size (crossbar) + 32+32 bytes 128+128 bytes 16+48 bytes
L2 banks + 12 banks 48 banks 12 banks
(¢) L1 Cache
L1 miss queue = 8 entries 32 entries 32 entries
MSHR (L1D) = 32 entries 128 entries 48 entries
Memory pipeline width | = 10 40 40

3.5.1 Off-chip Memory

The baseline architecture employs a First-Ready First-Come-First-Serve (FR-FCFS)
scheduling policy that prioritizes accesses to an already opened DRAM row from a
pool of pending requests in the scheduler queue to achieve higher row-buffer hits. To
maximize the benefit of FR-FCFS scheduling, we increase the scheduler queue size
and allow the DRAM to search in a larger pool of pending requests and schedule more
row-buffer hits. Maximizing row-buffer hits allows the DRAM to operate closer to the
peak DRAM throughput, increasing the bandwidth efficiency. In order to maximize
bank-level parallelism, we increase the number of banks per DRAM chip while keeping
the size of the DRAM constant. This reduces the number of rows per bank and therefore
spreads the accesses to different banks, thereby increasing concurrency. Finally, to

increase the peak throughput of DRAM, we increase the bus width of each DRAM chip.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 37

3.5.2 L2 Cache

To prevent throttling of L2 cache due to back pressure from DRAM, we increase the 1.2
miss queue size to allow more L2 misses to be buffered in the access path to DRAM.
Similarly, we increase the size of the L2 response queue to mitigate the back pressure
from the response network. To reduce structural hazards due to cache resources, we
increase the MSHRs. Stalls due to lack of non-replaceable cache lines can be resolved
by increasing the capacity or associativity of L2 cache. However, such parameters
reduce the miss traffic to the lower level, thereby altering the bandwidth demand. Since
we focus on performance of the memory system given a fixed bandwidth demand, we do
not alter these parameters as it leads to an unfair comparison in the context of bandwidth
bottlenecks. Instead, we increase the L2 access queue size to allow more requests to
be buffered at a stalled L2, avoiding back pressure to L1 cache. Therefore, all the
above parameters allow L2 (and higher levels) to operate closer to the peak throughput.
Finally, to increase the peak throughput of L2, we increase the 1.2 data port width,
crossbar flit size and L2 banks. We also note that other design parameters, such as .2
and crossbar frequencies, also achieve the goal of mitigating congestion. However, we
restrict ourselves to representative parameters that demonstrate the effect of increasing
the L2 bandwidth.

3.5.3 L1 Cache

We reduce the impact of back pressure from L2 cache by increasing the L1 miss queue
size. We also increase the MSHR entries to reduce the structural hazards. Similar to L2,
we do not increase the capacity and associativity of the L1 cache to mitigate cache line
contention. Instead, we increase the width of the memory pipeline on the core to allow
the load-store unit to buffer more pending cache requests. The above parameters prevent

the core from throttling, thereby allowing it to operate closer to the peak throughput.

3.6 Design Space Exploration

In this section, we evaluate the design space by scaling the bandwidth of different levels
of the memory hierarchy through the architectural knobs listed in Table 3.3. As a typical
HBM [56] provides up to 4x bandwidth compared to GDDR5 DRAM, we evaluate

similar factor of scaling in other levels of the memory.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 38

‘ L1 L2 m— DRAM L1+L2 s L2+DRAM All —
28 2.98x 3.15x

IPC (normalized to baseline)

1
I
0.6 ,

2, 4, b, S % 4, % a, é,& %, % % .7 S S Y % 0'11? 8.

0

&, 9
" S, 90 G(/ 'L
s, "% o % % o, ©

%

Figure 3.10: IPC gain with 4x design-point scaling of bandwidth resources in L1, L2,
DRAM and synergistically across different levels.

3.6.1 Results

In Figure 3.10, we demonstrate the results obtained by scaling the design parameters by
a factor of 4x. We begin by discussing the performance improvement from increasing
the bandwidth in independent levels of the memory hierarchy. Later, we discuss the
combined effects of increasing the bandwidth across adjacent memory levels, followed
by scaling the bandwidth across the entire memory hierarchy.

L1 Cache: On increasing the L1 resources, we see an average performance im-
provement of 4%. We observe the maximum speedup of 240% for sc followed by a
speedup of 16% for cfd. The reason for the observed speedup lies in the fact that
increased resources reduce the structural hazards on L1 cache. This results in better
overlap of memory operations with computation and lower latencies of cache hits, as
illustrated in Figure 3.5.

On the other hand, for some other benchmarks, the performance drops when the
L1 resources are increased. For instance, mm and ii suffer a slowdown of 33% and
25% respectively. This is because, although increasing the L1 resources allows the L1
cache to operate at peak throughput, at the same time it also leads to higher congestion
between L1 and L2, as the increased bandwidth demand of L1 is not matched by the
bandwidth provided by L2. Since higher congestion causes greater interleaving of
requests from different cores, requests from the same core (and therefore same warps)
get more sparse in the memory system, thereby delaying the tail request of a warp.
Since a core can resume execution only on receiving all the memory requests generated
by a warp, it causes significantly higher stalls as none of the cores can resume execution
any earlier than baseline. Additionally, we also notice a significantly higher L2 miss rate

for applications showing slowdown. For instance, the L2 miss rate increases from 16%

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 39

— nn ——
Q hybridsort
= 11 F sradv2 —&— |
b:s
c
-g 1.05 leukocyte 7
L
o] ;\U\;
o) 1+ —w : -
N NN
©
S 0.95 |+ .
S
o
£
09
o
o
0.85
1.2 1.3 1.4 1.5 1.6

Core Frequency (GHz)

Figure 3.11: Core frequency variation on real GTX 480 GPU.

to 58% for mm and from 15% to 62% for ii. This is also due to higher interleaving of
request streams from different cores that exhibit low inter-core locality, thereby causing
cache thrashing and destroying the intra-core locality in the L.2 cache.

We verify the above behaviour on a real GTX 480 GPU by increasing the core
frequency for representative benchmarks and note a performance degradation of up to
10%, as shown in Figure 3.11. Increasing the core frequency is analogous to increasing
the L1 cache resources as it increases the request rate (or bandwidth demand) from
L1 to L2. Interestingly, performance improves on reducing the core frequency as the
reduced bandwidth demand by L1 resonates well with the bandwidth offered by L2.

L2 Cache: By scaling the L2 cache resources, we observe an average performance
improvement of 59%. We observe the maximum speedup of 266% for mm, which is
also the most bandwidth-sensitive application. A significant performance improvement
by scaling the L2 parameters signifies the criticality of the L2 bandwidth to the overall
system performance.

Off-chip Memory: Upon increasing the DRAM bandwidth, we observe an average
performance improvement of 11%. We observe the maximum speedup of 61% for
[bm followed by a speedup of 60% for nn. Note that the improved DRAM bandwidth
matches the bandwidth offered by High Bandwidth Memory (HBM) and is representa-
tive of HBM performance. We note that the average improvement is in close proximity
to the performance improvement of 15% obtained on a memory system with baseline
cache hierarchy and an infinite bandwidth DRAM (average P,r.y). However, it is
considerably less than the performance improvement achieved on increasing the 1.2

cache bandwidth.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 40

L1 and L2 Cache: Upon synergistically increasing the bandwidth of the cache
hierarchy, we observe an average performance improvement of 69%. We note that it
is higher than the sum of gains obtained by improving the bandwidth in both cache
levels independently, i.e., 4% from L1 and 59% from L2. We observe in mm that
even though increasing the L1 bandwidth alone resulted in performance degradation of
33%, increasing the L1 bandwidth with L2 results in a performance improvement of
276%, which is even higher than the 266% obtained by increasing the L2 bandwidth
alone. A similar effect is seen in ss. We can therefore conclude that despite a slowdown
on increasing the structural resources at L1, synergistic scaling of L1 and L2 results
in a much higher performance improvement, which is greater than the standalone
improvement of L2. We also observe that the average speedup by mitigating the
bandwidth bottleneck in the cache hierarchy (69%) is significantly better than the
speedup obtained by a memory system with baseline cache hierarchy and an HBM
DRAM (11%).

We note an exception for ii, where combined scaling of L1 and L2 led to a lower
speedup when compared to standalone scaling of L2 cache. However, we verify in
our experiments that on further increasing the L2 bandwidth, synergistic scaling starts
giving better results. This indicates that for i7, the increased L2 bandwidth in Figure 3.10
is not yet sufficient for the increased bandwidth demand of L1.

L2 and Off-chip Memory: We observe an average performance improvement of
76% upon increasing the bandwidth at both L2 and DRAM. It is worth noting this is in
close proximity to the average speedup obtained by synergistically scaling the L1 and
L2 bandwidth (69%).

All Memory Levels: We observe an average performance improvement of 90% on

increasing the bandwidth of the cache hierarchy as well as the off-chip memory.

3.6.2 Summary

We conducted a limited design space exploration on architectural parameters relevant to
the memory bandwidth in GPUs. We observed an average speedup of 4%, 59% and
11% on increasing the bandwidth of L1, L2 and DRAM alone. We further observed
an average speedup of 69% and 76% on increasing the combined bandwidth of L.1-L.2
and L2-DRAM. Finally, we observed an average speedup of 90% on increasing the
bandwidth of the entire memory system. Therefore, we demonstrate the criticality of

cache hierarchy in mitigating congestion. We also demonstrate that synergistic scaling

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 41

yields better results than increasing the bandwidth of the memory levels independently.
And finally, we show that mitigating congestion in the cache hierarchy exceeds the

benefit obtained by a memory system with HBM DRAM.

3.7 Cost-Benefit Analysis

In Section 3.5, we classified the architectural design space into two categories: Type
‘="and Type ‘+’. Later, we evaluated the effect of scaling these parameters by a factor
of 4x. However, such scaling across all parameters is typically not practical due to
cost overheads. Therefore, we qualitatively analyse the cost versus benefit associated
with the parameters in the design space and arrive at a cost-effective configuration to
scale the bandwidth across the memory hierarchy. We summarize the cost-effective

configuration parameters in Table 3.3.

3.7.1 Cost-effective Design Space

Type ‘=" parameters listed in Table 3.3 typically include buffers and MSHRs, and enable
the memory levels to operate closer to the peak throughput. Buffers are simple structures
and present minimal overhead in scaling. However, MSHRs are fully associative arrays
and indexing high number of requests can be expensive. Since we have already observed
in Figure 3.8 that L2 seldom stalls due to MSHR contention, we consider increasing
MSHRs only in the L1 cache.

Type ‘4’ parameters in the cache hierarchy such as crossbar flit size, L2 data port
width and L2 banks are more complex than simple buffers and MSHRs, and therefore
incur considerable cost in scaling. As shown in Figure 3.8, L2 data port only contributes
to 12% of total L2 stalls on average. Due to its low contribution to the overall L2 stalls,
we do not consider it for scaling. On the other hand, back pressure from interconnection
network contributes to 42% of L2 stalls on average. While both L2 banks and flit size
improve interconnect bandwidth and resolve such stalls, we do not consider increasing
the L2 banks. This is because each L2 bank has an independent port to the crossbar;
therefore, increasing the L2 banks would lead to higher number of routers in the crossbar,
in turn increasing the router area. In addition, router at the cores would need to arbitrate
over higher number of destinations, increasing the energy demands of the crossbar.
Instead, we only increase the flit size of the crossbar as it increases the point-to-point

bandwidth without significantly increasing the router area or arbitration energy.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 42

. ‘ 16+48 mmmmm 16468 32+52 mmm— HBM
[0]
£ 3.04x T 3.03
3 1.8 xl2l7xx
S 16
e 14 +
pe)
g2 Il ” Il I
g 1 -l n=l ll =B II nER P T || —
80'6o)fs@oéooé-/@of'o@o&cr@/y
= 7 (S
7 o D T o b B %y, o 5. S, e, S, T R Yy L
K3 K % T T Ty ©

Figure 3.12: Performance gain with cost-effective configurations in order of increasing or
equal cost overheads, normalized to the baseline architecture.

3.7.2 Asymmetric Crossbar

The baseline crossbar offers a uniform flit size of 32 bytes for all nodes between core-
to-L2 as well as L2-to-core. However, the bandwidth demand of the reply network
(L2-to-core) is higher than that of the request network (core-to-L2). This is because
the majority of request packets are load requests that amount to only 8 byte packets,
whereas the majority of reply packets are load responses that amount to 128 byte cache
lines. Although write requests in the request network present a higher bandwidth
demand, such requests are relatively infrequent and the latency for such requests is
not in the critical path of system performance. Therefore, we consider an asymmetric
crossbar with lower request bandwidth (16 bytes) and higher reply bandwidth (48
bytes), henceforth referred to as the 16+48 crossbar configuration. Note that we do not
increase the net area of the crossbar as the total number of point-to-point wires in the
16+48 crossbar are same as the baseline 32+32 crossbar. We also discuss other crossbar
configurations such as /16+68 and 32+52 with minor cost overheads over the baseline

architecture.

3.7.3 Results with Cost-effective Configuration

As shown in Figure 3.12, for the 16448 cost-effective configuration summarized in
Table 3.3, we observe an average performance improvement of 23.4%. It exceeds
the average performance improvement of 11% with HBM. We note an exception for
lavaM D which shows a performance drop of 37%. This is because lavaM D is limited
at L1 by the L2 back pressure (Figure 3.9) which gets aggravated due to reduced flit size

in the request network. Even increasing the interconnect reply bandwidth does not cause

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 43

much benefit as it is limited at L2 by the data port width (Figure 3.8). Additionally, in
our experiments we note that a standalone asymmetric crossbar without scaling other L1
and L2 parameters result in a lower speedup of 15.5%, thus emphasizing the importance
of synergistic scaling.

We also evaluate 16+68 and 32+52 cost-effective configurations and observe a
performance improvement of 29% and 25.7% respectively. While both the above
crossbar configurations have equal point-to-point connections in total, we notice higher
reward in investing more bandwidth in the reply network due to its higher bandwidth
demand.

Overhead: We use GPUWattch [98] to estimate the area of our proposed architec-
ture. We first compute the additional storage required in the cost-effective configuration
for buffers and MSHRs. We assume each buffer entry to be 128 byte wide, while each
miss queue and MSHR entry to be 8 byte wide. This results in a net storage overhead
of 94 KB and amounts to an area overhead of 6.9 mm? at 40 nm technology, computed
using existing values in GPUWattch. This amounts to an overall increase in the die area
by 0.98% with respect to the baseline processor area of 700 mm?. We do not report
power overhead as it is minimal and within the margin of error of the simulator.

The baseline 32+32 interconnection network occupies a total area of 27 mm?,
while the wires contribute to 11.6 mm?. Therefore, on increasing the point-to-point
connections by 20 bytes in /6468 and 32452 crossbar, we incur an additional overhead
of 3.62 mm?. Therefore, along with overhead of buffers and MSHRs, the above two

configurations result in a net area overhead of around 1.5%.

3.8 Related Work

In this section, we discuss prior work related to the proposals discussed in this chapter.

3.8.1 Cache Bypassing and Request Reordering

Several prior schemes have been proposed for GPUs to reduce the performance impact
of bandwidth bottlenecks and high memory access latencies. Some of these schemes
pertain to bypassing congested memory resources, while others include reordering
memory requests to maximize cache performance and minimize bandwidth demand.
Jia et al. [70] proposed a memory request and prioritization buffer (MRPB) where they

bypass the L1 cache when high contention is detected due to memory back pressure or

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 44

structural hazards at the L1 cache. This helps prevent stalling of the memory pipeline
and reduces the impact of congestion and bandwidth bottlenecks on performance. They
also propose reordering of memory requests from different warps and thread blocks
to improve the locality in the access stream. Through such reordering, requests from
the same source, such as warp or thread block, are grouped together to minimize cache
thrashing as they are expected to have higher locality. The new order of requests allows
for more cache-friendly access patterns, thereby improving cache performance. Li
et al. [99] proposed a more proactive way of cache bypassing, rather than reactively
bypassing the cache upon detecting congestion. In order to do so, they detect the locality
in the access stream and allow the L1 cache to be used only for requests with high reuse
and short reuse distances. The remaining accesses bypass the L1 cache proactively,
thereby reducing cache thrashing and circumventing congestion. In their scheme, the
reuse characteristics are maintained and preserved by decoupled tag and data arrays in
the L1 cache. Xie et al. [161] proposed a coordinated static and dynamic scheme to
perform cache bypassing. At compile time, they determine the loads that demonstrate
high locality and mark such loads to be allocated in the cache. On the other hand, loads
with poor locality are marked to bypass the cache. At runtime, the hardware uses the
above prior knowledge about locality characteristics to bypass or allocate the cache.
However, loads with moderate locality characteristics are selectively bypassed for a
fraction of thread blocks, where this balance is determined dynamically on the basis
of cache contention and resource congestion. Furthermore, Chen et al. [28] proposed
a hybrid scheme with coordinated cache bypassing and warp throttling (CBWT). In
their scheme, they enable cache bypassing on detecting high contention for cache
resources, thereby protecting cache lines with high reuse to reduce cache thrashing.
In addition, they monitor the NoC latencies and enable dynamic warp throttling when
high congestion in the memory system is observed. They do so by iteratively altering
the number of warps by hill climbing to optimize NoC latencies, thereby regulating
congestion. More recently, Lee and Wu [94] proposed Ctrl-C, an instruction-based
scheme that detects the reuse characteristics at per-instruction granularity and alters
the bypass aggressiveness accordingly for each instruction. Similarly, Koo et al. [86]
proposed APCM, an instruction-based scheme to not only bypass, but also to protect
cache lines using instruction locality characteristics. In their scheme, they detect
streaming access patterns in a single warp and use that to bypass the L1 cache for
similar instructions from the remaining warps. In addition, they detect instruction

sequences that show high tendency for reuse, such as loops, and protect high locality

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 45

cache lines in the L1 cache only for the duration of these instruction sequences.

Sethia et al. [139] recognized memory back pressure as a significant problem in
GPUs. In their scheme, they allow memory requests to continue accessing the L1 cache
despite a stalled LSU. This helps in resolving false dependencies and serialization
caused by structural hazards and memory back pressure, thereby allowing the hidden
hit-under-miss requests to access the L1 cache without explicitly waiting for the back
pressure to resolve. In turn, this helps in reducing the hit latencies and improving hit
rate in the L1 cache. They also proposed a scheduling policy where memory requests
from a single warp are issued to the memory system, instead of issuing memory requests
from all warps. This helps in enabling at least one warp to be serviced quickly so that
it can resume execution. On similar lines, Kim et al. [82] explored an opportunity
where independent instructions in a warp that follow the dependent instruction can be
executed while the warp is waiting for outstanding memory accesses to complete. This
is in contrast to baseline scheme where warps are descheduled on encountering the
first dependent instruction that is waiting on a pending operation. Subsequently, they
proposed pre-execution of such newly extracted independent instructions in the warp.
The output of such instructions is stored temporarily in renamed physical registers. This
pre-executed output is then utilized in the actual execution sequence, thereby preventing
write-after-write and write-after-read hazards that might occur due to reordering. This
improves the latency hiding ability of the GPU due to higher opportunities to overlap
memory latencies.

In summary, the above cache bypassing and request reordering schemes allow GPUs
to circumvent the stalls arising due to bandwidth bottlenecks or reduce the bandwidth
demand by improving cache performance. In contrast, our focus in this chapter is to
mitigate the stalls (not circumvent the stalls) by improving the bandwidth resources,
for a given bandwidth demand and cache performance (not reducing the bandwidth
demand). Given the huge bandwidth bottleneck in current GPUs, we expect above
techniques to be complimentary to our proposed cost-effective design space. Several
other proposals related to cache management and warp scheduling aim to maximize
cache utilization to reduce the bandwidth demand by capturing locality in the caches
and reducing thrashing. These proposals are presented and discussed in the subsequent

chapters (see Section 4.7 and Section 5.8).

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 46

3.8.2 On-chip Networks in GPUs

In the field of interconnection networks, several prior studies have recognized the
importance of NoC bandwidth in GPUs. Bakhoda et al. [11] proposed a checkerboard
organization of the mesh network where routers alternate between full-routers and
half-routers. A full-router provides full connectivity between all ports in a 2D mesh,
whereas a half-router limits the connectivity, thereby simplifying router design to
exploit many-to-few and few-to-many traffic pattern in GPUs. Kim et al. [80] proposed
DA2mesh, a cost-effective design to reduce congestion by increasing the NoC frequency
in GPUs, while maintaining the same channel width. They assume a mesh topology
for the interconnection network in their study. They also identify the criticality of
response network with respect to bandwidth demand. Subsequently, they propose a
heterogeneous NoC which consists of non-identical request and response networks. For
the request path, they employ the baseline 2D mesh, whereas for the response path, they
propose a direct all-to-all network overlaid on mesh with direct connections between
memory controllers and SMs. Direct connections reduce arbitration, thereby simplifying
the router and relaxing critical path requirements, allowing higher router frequency.
On similar lines, Mishra et al. [110] identified that a single monolithic interconnection
network is not suitable for CPU applications with divergent needs. Therefore, they
proposed heterogeneous and multiple interconnection networks, individually customized
for latency-sensitive and bandwidth-sensitive applications. The bandwidth-sensitive
design provides a wider but low frequency network, whereas latency-sensitive design
provides a narrower but high frequency network. While this chapter focusses on
different bandwidth demands for request and response path within the same application,
the above work is similar in the fact that it identifies the need for heterogeneity in
designing interconnection networks based on divergent bandwidth demands. Ziabari
et al. [175] evaluated the design space across different network topologies for GPU
workloads. They proposed independent and parallel networks for reply and response,
while also eliminating L.1-to-L.1 connections for energy efficiency — this is used as
a baseline in this chapter. In addition, they also recognized the lower bandwidth
demand of the request network in comparison to the response network. Therefore,
they proposed an asymmetric NoC architecture by shrinking the width of the request
network to improve energy efficiency. In our work, we share the above observation
about asymmetric bandwidth requirements for request and response networks. However,

we perform a design space exploration across the entire memory hierarchy, going

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 47

beyond interconnection networks. Thereafter, we motivate a synergistic improvement
of bandwidth across the memory hierarchy, i.e., an asymmetric interconnection network
alongside improvements to other bandwidth resources across the memory hierarchy
as well, such as MSHRs and buffers. Zhao et al. [173] also exploited the asymmetry
in bandwidth requirements for request and response networks. While using a mesh
network as baseline, they proposed ¢fNOC, a conflict-free design consisting of column-
independent token mesh for the request network. This leads to simplified router design
by removing input buffers, VC allocator and switch allocator from baseline router
design in the request network, thereby reducing the hardware cost. In a subsequent
work, Zhao et al. [172] demonstrated that the response network is often congested and
leads to high queuing latency for GPGPU workloads. They proposed HRCnet, which
consisted of a ring-chain network for the response path. They show that the proposed
ring network allows for higher channel width, without increasing the overall bisection
bandwidth. Therefore, HRCnet results in lower queueing latencies and scales gracefully
under high injection rates, providing a better alternative to 2D mesh networks in GPUs.
In contrast to the above prior techniques, we motivate a synergistic treatment of the
bandwidth bottleneck in GPUs.

3.8.3 Design Space Exploration

In prior work, analytical models have been proposed to explore the architectural design
space and construct balanced memory hierarchies with respect to bandwidth. Sun ez
al. [148] proposed Moguls, an analytical model to optimize the memory hierarchy design
by quickly exploring the design space suitable for an application. The model computes
the optimum bandwidth, cache levels and cache capacity to match the bandwidth
demand of an application. Gulur et al. [52] proposed ANATOMY, a queuing theory
based analytical model to study the off-chip memory design space in multicores. In
their model, they first capture the key workload characteristics, such as memory access
locality and bank-level parallelism, that are relevant to model the memory system
performance. Thereafter, these workload characteristics are evaluated with a simple
queuing model of the off-chip memory across different configurations and design
choices to estimate memory system performance. In contrast to the above proposals, we
investigate the finer parameters that lead to congestion in the existing memory hierarchy.
Therefore, we go beyond off-chip memory by including parameters such as MSHRs,

interconnect bandwidth, etc., that lead to congestion in a given memory hierarchy. In

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 48

addition, we mitigate congestion without changing the cache capacity and the number
of memory levels, i.e., maintaining a fixed bandwidth demand. Therefore, proposals
that alter the bandwidth demand are orthogonal to our work.

O’Neil and Burtscher [121] evaluated the performance bottlenecks in GPUs due to
control flow divergence and memory access irregularity. They also examined the impact
of cache size, latency and bandwidth, as well as main memory latency and bandwidth.
They observed a trend that GPUs are more sensitive to L2 bandwidth than DRAM
bandwidth for irregular workloads, an observation also made in our work. However, in
our work, we perform a more fine-grained analysis of the microarchitectural bottlenecks.
Additionally, we go beyond examining the bandwidth trends in the memory hierarchy,
and propose a cost-effective design space based on the insights about stalls in the
memory hierarchy. Alsop et al. [5] proposed GSI, a GPU stall inspector to identify
source of stalls in tightly coupled heterogeneous CPU-GPU architectures, in contrast to

discrete GPUs as done in our work.

3.9 Conclusion

In this chapter, we evaluate the bandwidth limitations posed by the memory hierarchy
in GPUs. We observe that the bandwidth bottlenecks are distributed across the entire
memory hierarchy and are not just limited to the off-chip memory. We also observe that
bandwidth bottlenecks lead to high congestion in the memory hierarchy, in turn leading
to high latencies that appear in the critical path. We characterize the stalls across the
memory hierarchy and isolate the causes of congestion at each memory level.

After a rigorous characterization of the bandwidth bottlenecks, we identify the
key architectural parameters across the memory hierarchy that prevent the different
levels from operating at peak throughput or inherently limit the peak throughput. Using
these architectural knobs, we perform a design space exploration and demonstrate that
increasing bandwidth in isolation at specific levels of the memory hierarchy can be
sub-optimal, and can even lead to performance degradation. We also demonstrate that
the performance improvement obtained by synergistically improving the bandwidth of
the cache hierarchy surpasses the speedup achieved by a memory system with baseline
cache hierarchy and HBM DRAM. Finally, using the insights developed in this work, we
perform a cost-benefit analysis and identify cost-effective configurations of the memory
hierarchy to best mitigate the bandwidth bottlenecks. Our cost-effective configuration

comprises an asymmetric crossbar, alongside other architectural optimizations that

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 49

allow L1 and L2 to operate closer to the peak throughput. We show that our final
configuration achieves a performance improvement of 29% on average with a minimal
area overhead of 1.5%. In summary, this chapter provides a methodology to improve
the bandwidth of the memory hierarchy by quantifying the bandwidth bottlenecks and

investing resources at the most potent bottlenecks in a cost-effective manner.

Chapter 4
Cooperative Caching for GPUs

GPUs are no longer perceived as accelerators solely for graphic workloads, and now
cater to a much broader spectrum of applications. The massive compute power of
modern GPUs and recent innovations in their architecture [115, 116] have helped
unleash the latent potential of several non-graphical applications. The cache hierarchy
— adopted from traditional CPUs — is one such innovation to capture the locality needs
of upcoming applications and advance the pervasiveness of GPUs. However, the cache
management policies that are suitable for CPUs may not be suitable for GPUs, evident
from the high cache miss rates seen on many GPUs. One such inefficiency in current
GPU cache management policies is the repeated access to the shared L2 cache from
different L1 caches for same data, arising due to inter-core data reuse. Such a policy
is a common occurrence in CPUs and is generally benign for performance when L1
miss rates are low, as it does not excessively deplete the memory bandwidth. In GPUs,
however, such a policy is corrosive to the overall performance due to high L1 miss rates.
As a result, for memory-intensive applications, where performance is constrained by
memory bandwidth, such a policy aggravates the bandwidth issue by repeated memory
requests for data already cached elsewhere at the same level in the memory hierarchy.
Therefore, it is critical to address the inefficiencies of the existing cache management

policies in GPUs to ensure effective usage of scarce bandwidth resources.

4.1 Overview

In this chapter, we aim to reduce the congestion across the memory hierarchy in GPUs
by addressing the bandwidth aspect of inefficient cache management. The presence of

such inefficiency in cache management is indicated by the high L1 cache miss rate, as

50

Chapter 4. Cooperative Caching for GPUs 51

100 ,
90 L1-Miss mmmmm

80 L L1-Replication

70
60
50
40
30
20

Y%

Figure 4.1: (a) L1-Miss: L1 cache miss rates (b) L7-Replication: Percentage of L1

misses cached in remote L1 caches.

shown in Figure 4.1 for a variety of general-purpose applications run on a simulated
GTX 480 GPU. As discussed in Chapter 3, high L1 miss rates lead to increased pressure
on L2 bandwidth, thereby increasing memory access latencies due to congestion in the
L2 access path. In our experiments (discussed later in Section 4.5), we observe that
due to congestion in the L.1-L.2 interconnect and L2 access queues, L2 accesses take
up to 2-3x more cycles compared to the minimum access latency of L2. Due to lack
of sufficient independent operations in memory-intensive applications to overlap such
high memory access latencies, increased latencies to the lower level get exposed and
appear in the critical path, reducing system performance. In Chapter 3, we identified
the critical bandwidth bottlenecks across the memory hierarchy in GPUs and explored
the architectural parameters that can be scaled to alleviate the bandwidth bottlenecks.
However, given the large magnitude of the bandwidth bottleneck, indicated in Table 3.2
by the potential speedup of 2.37x shown in absence of any congestion, the problem
requires redressal at multiple fronts. Therefore, in this chapter, we aim to reduce the
congestion in the memory hierarchy by improving the aggregate caching efficiency of
the L1 cache, thereby reducing the demand on the shared L2 bandwidth.

Observation: In streaming applications, cores work on independent data with little
or no overlap in the working dataset. However, in general-purpose applications we
observe a considerable potential for data reuse across different cores. Figure 4.1 shows
that a significant percentage of miss requests generated by L1s is for data already
present on a non-local (or remote) L1 cache. If we can exploit this reuse within the L1s,
duplicate requests to the shared L2 can be potentially eliminated. This would result in
reduced congestion and faster lower level access for the remaining requests.

Proposal: In this chapter, we propose a Cooperative Caching Network (CCN) for

Chapter 4. Cooperative Caching for GPUs 52

L1 caches in GPUs to improve the aggregate efficiency of the L1 cache hierarchy in
filtering requests to the L2 cache. In our proposed scheme, we connect the private
L1 caches in a lightweight ring network to facilitate communication of reusable data
among the L1 caches. In doing so, we reduce the average memory access latency due
to the following two reasons. Firstly, a fraction of L1 load misses, with reusable data
cached on remote L1s, can now completely bypass the high latency access path to L.2;
they are instead serviced by the CCN with significantly lower latencies (42 cycles on
average based on our experiments) as compared to the L2 roundtrip access latencies,
or simply L2 access latencies (which is ~300 cycles due to congestion). Secondly,
cooperatively sharing reusable data within the L1 caches via the CCN reduces the traffic
to L2 cache. This relieves the pressure on the interconnect as well as on the L2 access
queues, thereby reducing the L2 access latencies (by 78 cycles on average). Thus, CCN
provides a faster access to L2 for miss requests that do not find a sharer in the CCN.

In effect, our proposed architecture services a portion of L1 misses collaboratively
within the L1 caches with much lower latencies than the L2 access latency. This
leads to less congestion in the L2 access path, thereby accelerating the response from
memory for requests that do not find a reusable copy in remote L1 caches. However,
in the absence of reuse (such as in streaming applications), unsuccessful probes in
the CCN adds an additional overhead to the L1 load misses. In such cases, due to no
reduction in congestion, the CCN overhead is not ameliorated, and this results in an
overall performance penalty. Therefore, in our final scheme we propose CCN-RT, a
Cooperative Caching Network with Request Throttling. It dynamically adapts to the
coarse-grained reuse patterns exhibited by the application, bypassing the CCN when
there is little or no reuse.

Organization: The remainder of the chapter is organized as follows. Section 4.2
provides an overview of the baseline architecture for our study and characterizes the
workloads. Section 4.3 investigates the reuse patterns and provides a fresh insight
into the inter-core reuse patterns within the GPUs by profiling the communication
characteristics over a diverse range of GPGPU applications. Furthermore, we assess
the efficacy of cooperative caching in GPUs. Section 4.4 presents CCN, a Cooperative
Caching Network for L1 caches in GPUs that is cognizant of the inter-core reuse.
Section 4.5 evaluates the architecture and proposed optimizations to our baseline
proposal. We show that CCN reduces the overall bandwidth demand to L2 cache by
servicing reusable requests via the CCN, boosting performance for memory-intensive

applications that show high levels of sharing across L1s. With our final proposal

Chapter 4. Cooperative Caching for GPUs 53

Table 4.1: Baseline architectural parameters for GPGPU-Sim

Parameter Value
Core 15 SMs, Greedy-then-oldest (GTO) scheduler
Clock frequency Core @ 1.4 GHz; Interconnect/L2 @ 700 MHz
Threads per SM 1536
Warp width 32
SIMD lane width 32
Registers per SM 32768
Shared Memory 48 KB
L1 Data Cache 16KB, 128 byte line, 4-way, LRU, write-through, no-write-allocate
L2 Cache 768 KB, 128 byte line, 8-way, LRU, write-back, 12 banks
DRAM GDDRS DRAM, 6 channel, 64-bits per channel, 924 MHz

CCN-RT, we show an average performance gain of 14.7% for applications that exhibit
reuse, while being benign to applications with no reuse. We also reduce the average
memory latency by 24%, L1 to L2 traffic by 29% and core stall cycles by 26%. Our
proposal incurs nominal area and energy overheads of 1.3% and 2.5% respectively.
Section 4.6 compares CCN with prior techniques. Section 4.7 discusses the related
work and positions our findings in the current state-of-the-art. Section 4.8 concludes

the chapter by summarizing the findings and contributions of this work.

4.2 Background

In this section, we outline the necessary background for this chapter that includes the

baseline architecture and the evaluated workloads.

4.2.1 Baseline Architecture

In this study, we consider a baseline similar to NVIDIA’s Fermi architecture. Our
baseline GPU consists of 15 SMs, each with a 32 lane SIMD unit. As discussed in
Chapter 2, each core consists of a private L1 data cache, shared memory (scratchpad)
and read-only instruction, texture and constant caches. Private caches of a core are
backed by a shared L2 cache that has an access latency of 120 cycles for non-texture
accesses in an uncongested memory system. The L1 data caches are non-coherent
and employ write-through, no-write-allocate policies. The baseline parameters are

summarized in Table 4.1.

Chapter 4. Cooperative Caching for GPUs

54

Table 4.2: Benchmark characterization: (a) PerfX - speedup with perfect memory (b)

URC - percentage of total L1 load misses that have reusable data on a remote L1.

‘ S.No. ‘ Suite Benchmark ‘ ABV. ‘ Dataset ‘ PerfX ‘ URC ‘
1 MapReduce Matrix Multiplication mm 768 x 768 data points 9.86 | 4%
2 MapReduce Similarity Score ss 1024 x 256 data points 6.18 | 28%
3 Rodinia Computational Fluid cfd 200000 elements 6.17 | 51%
4 MapReduce Page View Rank pvr 21 MB 593 | 32%
5 Rodinia Stream Cluster sc 16384 points; 256 dimension 549 | 18%
6 Rodinia Breadth-First Search bfs’ 1000000 nodes 5.18 | 3%
7 Rodinia Wavelet Transform dwt2d 1024 x 1024 496 | 7%
8 Parboil Lattice-Boltzmann Method Ibm 120 x 120 x 150 data points 449 | 0%
9 MapReduce K-Means km 10000 x 3 data points; 24 clusters | 3.85 | 24%
10 Rodinia Hybrid Sort sort 4194304 floating points 3.68 1%
11 Parboil Breadth-First Search bfs 8500000 nodes 357 | 6%
12 Rodinia Particle Potential lavaMD 7 x 7 x 7 boxes 2.81 1%
13 Parboil 2-D Histogram histo 10000 x 4 dimension 263 | 1%
14 | MapReduce String Match sm 4 MB 252 | 3%
15 Rodinia Cardiac Myocyte myocyte 100 instances 238 | 1%
16 Rodinia Needleman-Wunsch nw 2048 x 2048 data points 231 | 8%
17 Rodinia Graph Traversal b+tree 10000 nodes 221 | 25%
18 | MapReduce Inverted Index ii 28 MB 2.19 | 2%
19 Rodinia Particle Filter pfloat 128 x 128 x 10 2.15 | 8%
20 Rodinia Tracking Microscopy leukocyte 176 MB 1.88 | 1%
21 | MapReduce Word Count wc 96 KB 1.86 | 54%
22 Parboil Sum of Absolute Diff. sad 52 KB vs. 52 KB frame 1.76 | 3%
23 Rodinia Speckle Reduction sradvl 512 x 512 data points 1.74 | 15%
24 Rodinia Speckle Reduction sradv2 2048 x 2048 data points 1.70 | 16%
25 Parboil Cartesian Gridding mri-g 61 MB 149 | 2%
26 Rodinia K-Means kmeans 204800 data points; 34 features 147 | 0%
27 Rodinia Matrix Decomposition Iud 2048 x 2048 data points 1.27 | 28%
28 Parboil PDE Solver stencil 512 x 512 x 64 input 1.23 | 6%
29 Rodinia Heart Wall Tracking heartwall 49 MB 1.19 | 0%
30 Rodinia Back Propagation backprop 65536 input nodes 1.10 | 3%
31 Rodinia Thermal Modeling hotspot 512 x 512 data points 1.07 | 29%
32 Parboil Coulombic Potential cutcp 96604 atoms 1.00 | 78%
33 Parboil MRI Reconstruction mri-q 64 x 64 x 64 data points 1.00 | 0%
34 Parboil Angular Correlation tpact 10391 data points 1.00 | 19%

Chapter 4. Cooperative Caching for GPUs 55

4.2.2 Workloads

For the purpose of this study, we use CUDA applications from three major general-
purpose benchmark suites, viz., Rodinia (v3.0) [27], MapReduce [57] and Parboil [146].
We categorize the benchmarks according to their sensitivity to the memory hierarchy.
Table 4.2 lists the benchmarks sorted by the speedup (PerfX) shown on a perfect memory
system that has zero access latency to lower level memories and infinite bandwidth
between memory hierarchies on a Fermi GPU.

A program is said to be memory-intensive if it comprises several instructions requir-
ing long latency memory operations. As seen in the previous chapter, the performance
of memory-intensive applications is usually bounded by the bandwidth to lower level
memories. Therefore, applications with higher PerfX are considered as memory-bound
or memory-sensitive applications as the magnitude of speedup on a perfect memory

system essentially indicates the gravity of bandwidth problem in the benchmarks.

4.3 Need for Cooperation

Graphics and general-purpose workloads exhibit different memory access patterns.
In traditional graphics applications, kernels typically operate on independent data of
streaming nature. As a result, different thread blocks are executed in considerable
isolation. On the other hand, general-purpose applications show varying amounts of
reuse within the thread blocks and also at the boundaries with neighbouring thread
blocks. For instance, in scientific application such as computation of Coulombic
Potential (cutcp), atoms are organized in a 3D lattice. A sub-group of atoms constitute
a thread block and the entire lattice is divided into multiple thread blocks. In order to
compute the potential difference on the atoms at the edges and corners of a sub-lattice
(or thread block), coulombic potential contributed by atoms from surrounding sub-
lattices needs to be read, which requires sharing and reuse of data among neighbouring
thread blocks. When such thread blocks are scheduled on different cores on a GPU,
it results in inter-core reuse. In current GPUs, reuse across thread blocks on different
cores can only be exploited by localizing the data on the L2 cache and not any closer.
But in doing so, cores have to incur the congestion delays in L1-L2 interconnect, as
well as the delays in the L2 access queues. Thus, for those applications that are bounded
by the bandwidth to the lower level, it degrades overall performance by clogging the
access path to the L2 cache.

Chapter 4. Cooperative Caching for GPUs 56

14 14 14
13 13 13
12 12 12
11 11 11
10 10 10
g 9 g 9 @ 9
g3 23 23
EN Z 6 z 6
s s s
4 4 4
3 3 3
2 2 2
1 1 1
0 0 0
0123456 7 891011121314 0123456 7 891011121314 0123456 7 891011121314
REQUESTING CORES REQUESTING CORES REQUESTING CORES
(a) cutcp (b) dwt2d (c) km
14 14 14
13 13 13
12 12 12
11 11 11
10 10 10
2 3 2 3 2 3
B3 g3 g3
Z 6 6 z 6
E: g g ¢
5 5 5
4 4 4
3 3 3
2 2 2
1 1 1
0 0 0
01 23456 78 91011121314 01 23456 78 91011121314 0123456 7 891011121314
REQUESTING CORES REQUESTING CORES REQUESTING CORES
(d) tpacf (e) pvr (f) pfloat
LOW HIGH
(g) Reuse Score

Figure 4.2: Heatmaps indicating inter-core reuse by cores on the x-axis for data cached
on the cores on the y-axis. Dark spots in the heatmaps indicate high reuse between the
corresponding cores at their x and y coordinates.

4.3.1 Inter-core Reuse

In order to quantify the degree of temporal and spatial reuse of global data between
thread blocks, we analyse the L1 miss traffic of each core. In Table 4.2, we show the
Reuse Coefficient (uRC), which is the percentage of miss requests received by the L2
cache from private L1 caches for addresses that reside remotely on at least one L1 cache.
We see a maximum uRC of up to 78%, and an average of 14% across all benchmarks.
High uRC for some benchmarks indicates that reuse requests from L1 caches form a
large portion of traffic to L2. It is worth noting that we only consider it as reuse if the
load miss address is cached on a remote L1 at the time of the miss.

In Figure 4.2 we further characterize the inter-core reuse patterns at the granularity
of each core with every other core, providing deeper insight into the reuse dynamics.
For brevity, we show the set of distinct observed patterns and omit those that replicate

the patterns shown here. The x-axis indicates the cores that incur an L1 load miss and

Chapter 4. Cooperative Caching for GPUs 57

the y-axis indicates the sharers for that miss. A dense area in the heat map at coordinate
(x,y) indicates that a high proportion of load miss requests by core-x are cached by the
L1 at core-y. For instance, cutcp shows a prominent reuse of data cached at a distance of
4 cores from the location of the miss; dwt2d shows a strong reuse between neighbours;
km shows a gradual decline in reuse as we go further from the core; and tpacf shows

considerable levels of reuse across all cores.

4.3.2 Efficacy of Cooperation

We have shown in the previous section that for general-purpose applications there is
considerable reuse across L1 caches. We refer to those load requests as reuse requests
that miss in the local L1 but hit in a remote L1. By removing such reuse requests
(also quantified as uRC) from the pool of total misses going to the L2 cache, we can
reduce the pressure on L2 bandwidth. In order to assess the efficacy of reducing the
bandwidth demand on the overall performance, we begin by examining the performance
improvement when reuse requests do not congest the access path to L2. In these cases,
reuse requests are instead serviced cooperatively within the L1s with varying remote L1
access latencies, or reuse latencies. Since applications with low uRC are not expected
to show any change, we focus on benchmarks with high uRC. Later, we demonstrate
the effect of our final proposal on applications with low or zero uRC as well.

Figure 4.3 shows the speedup due to cooperation, and demonstrates a noticeable
improvement in performance, specifically for memory-intensive applications with high
URC. For instance, c¢fd and pvr show performance improvements of up to 73% and 38%
respectively. Both of these applications are severely bounded by the memory bandwidth
and at the same time exhibit high reuse. On the other hand, despite high reuse in cutcp
and hotspot, there is no significant gain in IPC since bandwidth is not critical for these
benchmarks.

Another key observation in this study pertains to the variation of performance as a
function of remote L1 access latency. We observe that the performance improvement in
the region between 0-80 cycles is fairly stable, with the average IPC gain only changing
from 21.5% to 18.8%. This is because in this region, latencies to remote L1s can be
effectively hidden by multithreading on the cores. Moreover, reduced congestion in
the L2 access path and faster responses to reuse requests (compared to L2 accesses)
improves the average number of active warps on the cores. This boosts the ability of

the cores to further mask the memory access latencies. Due to these effects, reuse

Chapter 4. Cooperative Caching for GPUs 58

80

70 fa——» > cfd —*—1
Stable L2 access latency range hotspot
60 [reuse latency lud T

50 L range.
Exposed latency range

IPC improvement (%)

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Remote L1 access latency

Figure 4.3: Speedup of cooperation with varying remote L1 access latencies.

latencies up to 80 cycles are effectively hidden by multithreading and do not determine
the execution time. However, on further increasing the reuse latencies, performance
improvement starts to degrade more rapidly. In fact, the IPC gain returns to nearly 0%
when the reuse latencies are varied in the range of L2 access latencies (around 300
cycles). This is because latencies for reuse requests get increasingly exposed and can
no longer be hidden by multithreading, despite reduced congestion.

In summary, these initial results indicate that for memory-bound applications, when
there is considerable reuse of data across L1 caches, cooperation among the private L1
caches can result in a considerable speedup (up to 21.5% on average). Notably, the
observed performance improvement is fairly stable in the reuse latency range of 0-80

cycles.

4.4 Cooperative Caching

In the previous sections, we observed a potential for cooperative caching on GPUs
and assessed its efficacy. We now propose a cooperative caching framework to use the
private L1 data caches in an aggregate manner. We begin by formalizing the above
discussion and analysing the parameters that contribute to the L2 access latencies for
L1 miss requests. Later, we propose a cooperative caching scheme and discuss the

architectural details.

Chapter 4. Cooperative Caching for GPUs 59

4.4.1 Analytical Model

Here we present a simple analytical model to explain the conditions under which reuse
delivers a performance gain. Firstly, in the absence of cooperation between L1s, let
lo be the average memory latency to access the shared L2 cache. Secondly, with
cooperation between L1s, let /., be the fraction of L1 misses that hit in a remote L1
cache. Furthermore, let /.5 be the average hit latency for accesses to remote L1s. As
a consequence of reduced congestion in the L2 access path due to remote L1 hits, let
dcong be the reduction in L2 access latency. And finally, let 8,yerheqaq be the cooperation
overhead borne by those requests that do not have a shared copy. Therefore, the new
average memory latency to L2 upon enabling cooperation, /¢, can be obtained via

Equation 4.1.

lC = (ZO - 6Cong + 60verheaa’) (1 - hreuse) + lreuse hreuse (4- 1)

lreuse < lo L. .
Criteria for useful cooperation 4.2)

8overhead < 8cong

In order to derive gain from cooperative caching, /c must be minimized. Therefore,
remote L1 accesses for reuse requests must take less time than a normal L2 access, i.e.,
Lreuse < lo. Additionally, we have already seen in Figure 4.3 that the maximum gain from
cooperation is sustained in the lower reuse latency range, i.e., Leyuse € (0,80). Finally,
for the remaining L2 accesses, the cooperation overhead must be less than the benefit
obtained from reducing the congestion in the L2 access path, i.e., Ooyernead < Ocong- A
combination of above conditions will result in a lower average L2 access latency, i.e.,
lc <lo.

How should we go about implementing the cooperative caching framework? Follow-
ing the approach of traditional multicores, a central directory in the L2 cache [91, 2, 74]
can be used to store information about the sharers. However, maintaining a directory
as part of the L2 will not mitigate the existing bandwidth problem in accessing the
L2, and instead, will only worsen it. This is because the additional control and update
traffic to the central directory will further increase the bandwidth demand to the L2
cache. Alternatively, an approach along the lines of cooperative caching schemes for
CPUs [23, 24, 59] may be used. Such schemes aim to minimize hop latencies to find a
sharer and retrieve data using a highly interconnected network of L1 caches. However,
since we have demonstrated that we have a considerable leeway of around 80 cycles to
fetch the shared data from a remote L1, such an aggressive scheme to find a sharer is an
overkill for GPUs.

Chapter 4. Cooperative Caching for GPUs 60

..... Core-0 Core-1
| Request Channel i Towards Coré 3!
Fnzﬁ!allllllll——+—+lﬁllllllll———*—elﬁllllllllnue
rom Core ReqQ-0 : ReqQ-1 . ReqQ-2 [

Response Channel

(e llllllllel;____llllllll«lé___llllllllele

Towards Core 14 RespQ-0 RespQ-1 RespQ-2 From Core 3
Cooperative Caching Network

Figure 4.4: Cooperative Caching Network.

In view of the above discussion, we propose a lightweight ring-based Cooperative
Caching Network. A ring topology is the lowest degree network and requires the fewest
number of inter-core connections. It is also lowest in terms of logical complexity
and power consumption as all core-to-core connections will be near-neighbour, and
therefore, the wires will be short. In addition, all routers in a ring are simple multiplexers,
which are more energy efficient than complex crossbar routers. As we have shown that
GPUs can tolerate reuse latencies gracefully up to 80 cycles, a ring topology appears to
be a cost-effective solution, as it allows us to trade-off higher latencies for simplicity

and short wires, i.e., lower power consumption and die-area cost.

4.4.2 Architecture

In our proposed scheme, we facilitate the communication between neighbours by
connecting the private L1 caches in a ring via our Cooperative Caching Network (CCN).
The CCN comprises two different channels, viz., request channel and response channel.
The request channel comprises a network of Request Queues or ReqQ while the response
channel comprises a network of Response Queues or RespQ. As shown in Figure 4.4,
each L1 has an independent pair of the aforementioned queues to allow the cache to
participate in cooperative caching. The L1 caches interact with their home queues
via CCN Buffers (CB), which hold the tag and Core-ID for the load misses, until the

Chapter 4. Cooperative Caching for GPUs 61

CCN is ready to accept a request. A new miss request, after allocating a cache line
in the L1 cache as done in the baseline architecture, enters the local Request Queue.
Thereafter, it travels around the request channel by hopping on other Request Queues
and probing the different L1 caches on its way. If a remote copy is found in one of the
nodes, the response from the hit node is sent back to the requesting core in a similar
way by hopping in the reverse direction via the Response Queues at each core. Finally,
after reaching the requesting core, the previously allocated cache line is filled with the
response data and the miss is serviced. Note that a remote L1 copy is considered for
sharing only if it is not pending on a cache-fill for the requested data at the time of
lookup. In other words, hits-under-miss on outstanding miss requests are not considered
for sharing in the CCN.

More specifically, upon incurring an L1 miss for global data and subsequently
allocating a cache line in the L1 cache, each core pushes the miss tag information into
its CB along with the Core-ID, where the request waits until the corresponding ReqQ
is ready to accept a new request. At every cycle, valid entries at the head of the ReqQ
lookup the corresponding L1 cache (if it is not the home core of that request) before
hopping on to the next ReqQ. If the request travels back to the requesting core without
a reuse copy, it is finally sent to L2. However, if a sharer is found, the sharing core
enqueues the response to its RespQ. The response travels back to the requesting core
and fills the allocated cache line in the L1 cache, thereby avoiding an L2 access. If
request queues get full due to congestion, the CB eventually stops accepting new miss
requests. In such a scenario, the L1 load misses go directly to L2 until the CCN can
start accepting new requests again.

Prioritization Policy for Queues: Each queue in the CCN has a corresponding
input multiplexer to select one of the entries out of the two possible input sources. In
the request channel, a ReqQ can either accept a new miss request from the home core
via CB, or a forwarded request from a preceding ReqQ. In our proposal, we prioritize
an older request (from ReqQ) over a new one (from CB). This helps in preventing over-
subscription of CCN to new L1 misses by allowing the previously accepted requests
to pass-through. Therefore, it minimizes the roundtrip overhead (8,y¢;heqq) in CCN for
subscribed requests. Repeated unsuccessful attempts to inject a new request in the CCN
due to the above prioritization, thus causes the CB to get full and hence, deflects the L1
misses directly to L2, allowing the CCN to recover from congestion.

In response queues, however, we prioritize a new cache response (from Core) over an

older response (from RespQ). This is because response queue latencies do not contribute

Chapter 4. Cooperative Caching for GPUs 62

t0 Oyyerneaqd DUt contribute to the reuse latencies /¢y, which has comparatively more
relaxed requirements (shown in Figure 4.3). More importantly, if the response of a
new remote hit is not accepted by the response queue, the tag entry at the head of the
corresponding ReqQ that caused the hit is not popped, potentially stalling the entire
request network and increasing the 8,,¢,4eqq in the request channel.

CCN Memory Consistency: The CCN mechanism conforms to the existing mem-
ory consistency model supported by Fermi. CUDA provides two types of load instruc-
tions [128] — a normal load cached at L1 (/d.ca) and a direct load to L2 bypassing the
L1 (ld.cg). Due to the write-through, no-write-allocate policy of the L1 cache, a write
causes the matching cache line in L1 to be invalidated, thereby causing the most recent
value to reside in L2. However, due to a weak memory model [40, 4] and absence
of coherence in GPUs, an /d.ca accessing L1 on a different core can return a stale
value. Litmus tests [4] have shown that due to weak consistency, an /d.ca load may
return a stale value on the same core as well, even if preceded by an /d.cg to the same
address (CoRR). CCN adopts similar weak memory ordering semantics for /d.ca loads;
indeed, an L1 miss can return a stale value by snooping other cores via CCN, instead
of reading the L2 which may have the latest value. However, since a baseline GPU
guarantees reading the most recent value for Id.cg loads, CCN does not intercept such
loads, and hence, does not further weaken the memory model. In other words, when
the programmer or the compiler uses /d.cg loads to bypass the L1, the current memory
model ensures the most recently written value is returned — a correctness guarantee
also provided by CCN.

4.4.3 Shadow Tags

Since each L1 now services additional tag lookups for CCN requests, such remote
lookups could affect the performance of local cache accesses. To eliminate the interfer-
ence of remote lookups on local requests, we duplicate the tags of the L1 data cache in a
separate set of Shadow Tags (ST) adjacent to each L1. The shadow tags always contain
an identical copy of the L1 tags, which is achieved by always writing tag updates to
both sets of tags simultaneously. As a result, concurrent reads at independent addresses
can then take place to L1 tags and shadow tags, from the local core and remote lookups
respectively. Therefore, the shadow tags decouple the performance of each local cache
from interference of CCN traffic. However, if a shadow tag lookup succeeds, then the

remote access makes a regular L1 access to retrieve the data it needs. This steals a cycle

Chapter 4. Cooperative Caching for GPUs 63

from the L1 data cache, which is taken into account in our performance model.
Overhead: For the largest L1 data cache configuration of 48 KB with 128 byte line

size, we require 24 upper address bits per tag, assuming 40-bit physical addresses [115],

plus one valid bit. As the L1 data cache is 4-way set-associative, the shadow tags are

arranged as 96 sets of four 25-bit tags in 96 x 100 single-ported tag memory.

Way 0 Way 1 Way 2 Way 3
Vo | Tagp[39:16] | V1 | Tag1[39:16] | V2 | Tagr[39:16] | V3 | Tagz[39:16]

Therefore, the net storage overhead of the shadow tags is 1200 bytes per SM,
amounting to a total of 17.5 KB for a 15 core GPU that we consider in our study.
Although, each remote access has to be checked in multiple shadow tags, these shadow
tag memories are small and can be constructed from low-leakage high-density bit-cells

without impacting the overall cycle time of the ring interconnect.

4.4.4 Request Throttler

In order to prevent those cores that do not exhibit any inter-core reuse from congesting
the CCN, we introduce a Request Throttler (RT) at each core. The purpose of RT is to
throttle the requests from entering the CCN when prior routing of misses to CCN proves
to be below a threshold level of effectiveness. In such scenarios, RT diverts the remote
lookup requests directly to L2 cache. In order to do this, each RT periodically samples
the CCN performance parameters and at the end of the sampling period, computes the
success rate in routing its load misses to CCN during the sampling interval. The success
rate is determined by the ratio of hits in the CCN to the total number of requests injected
in the CCN by the corresponding L1 cache. If the success rate is below the threshold,
the L1 cache bypasses the CCN until the next sampling interval, and performs the load
miss by sending the request directly to L2 cache. However, the shadow tags of the
throttled cores still participate in the lookup for other requests in the CCN.

To illustrate the working of RT further, we define the sampling interval as g and the
periodicity of sampling as tp where tg << tp. Therefore, the entire period of execution
is logically divided into multiple epochs of duration tp. We also define H,,;, as the
minimum hit rate required in the CCN in order to derive a benefit from cooperation. At
the beginning of an epoch of interval ¢p, each core begins by routing the load misses

to CCN for a fixed sampling duration of zg. During the #g interval, RT collects the

Chapter 4. Cooperative Caching for GPUs 64

statistics about the number of requests injected in the CCN (N,,,,;) and the number of
hits observed for its requests (NVp;;s). At the end of the sampling duration, RT computes
the hit rate (Ayeyse) in the CCN, i.e., Areuse = Npirs/Niotat- If Breuse > Hiin, RT continues
to inject requests in the CCN for the remaining duration of (zp - t5) in the current epoch.
On the other hand, if heyse < Hpin, RT disables the routing of requests to CCN for the
remaining duration of the epoch. After the current epoch ends, Ny;;s and N,y are reset
and RT repeats the entire process again for the new epoch. Therefore, with the help of
RT, we improve the average success rate of sending a load miss to CCN by preventing
those cores from cooperating that are not working on potentially reusable data, during

specific epochs of execution.

4.4.5 Working Example

In this section, we further illustrate the working of CCN. Figure 4.5 shows the flow
of requests within the CCN. In this example, Core-0 incurs a load miss for a global
data in its private L1 cache and allocates a cache line in the L1 cache. In the baseline
architecture, this L1 miss would be directly routed to the L2 cache. However, with
our scheme, the miss request can either go to the CCN or to the L2 cache. RT takes
this decision for that particular core on the basis of the statistics collected over the
most recent sampling interval, fg. In this example, we assume that /s for Core-0
and Core-1 suggests healthy reuse (> H,,;,), and therefore these cores continue to use
CCN. However, Core-2 observes a low reuse in the recent ts interval, thereby routing
all requests directly to the L2 cache in the current epoch.

In order to service a miss at Core-0 via the CCN, the tag and Core-ID of the load
request are pushed @ onto the corresponding CCN Buffer, CB0. Based on the input
prioritization policy for ReqQ, the new tag waits in CBO until it acquires priority and
is accepted @ by the ReqQ-0. Upon reaching the head of ReqQ-0, the miss request
does not perform a lookup in the ST of Core-0 as it is the home core of the miss
request, and therefore it is directly passed to ReqQ-1 @. Upon reaching the head of
ReqQ-1, it performs a lookup @ in ST of Core-1. Assuming it is a hit in Core-1, the
ST receives the cache line from the corresponding L.1 cache and enqueues the response
®in RespQ-1, if the RespQ-1 is not full. On the other hand, if the RespQ-1 is full, the
response is stalled, thereby preventing the tag at the head of the ReqQ-1 from getting
popped. Once the response reaches the head of the queue at RespQ-1 and acquires

priority to enter the next queue, it is pushed into RespQ-0 @. Since Core-0 is the home

Chapter 4. Cooperative Caching for GPUs 65

CBO o | [UTTH cBL ¢ TR
..... Core-0 Core-1
1 o
; (4] Towards Core 3!
= I — - IEEEEEEE — — ¥ EEEEEEEN -
rom Core / ReqQ-0 (3) | ReqQ-1 ReqQ-2 .
—-mmm-] EEEEEEEE T " EEEEEEEN T EENENEEN-E
Towards Core 14
RespQ-0 RespQ-1 RespQ-2 From Core 3

Figure 4.5: Working of the Cooperative Caching Network with Request Throttling.

core of the response, the new entry to RespQ-0 is bypassed to the head of the queue and
the response is serviced @ by filling the allocated cache line in the L1 cache of Core-0,

hence completing the request-response cycle.

4.5 Evaluation

In this section, we discuss the implementation of our proposed architecture and demon-

strate the results.

4.5.1 Implementation

For the purpose of this study, we implement and evaluate two flavours of our proposed
architecture, i.e., CCN-B and CCN-RT. CCN-B is our baseline CCN architecture which
includes a pair of queues and shadow tags at every node of the network. Whereas
in CCN-RT, we add the request throttling feature to the baseline CCN architecture.
Table 4.3 summarizes the design parameters for CCN-B and CCN-RT.

In our implementation, we choose the sampling interval and the periodicity of
sampling as 1 million and 10 million instructions respectively. This is based on the
observation that most benchmarks show a single-phase sharing across the entire appli-

cation. Hence, it allows us to sample for a short duration to get a fairly accurate hint

Chapter 4. Cooperative Caching for GPUs 66

Table 4.3: CCN parameters

Parameter Value
CCN Buffer 8-entry, 30 bits per entry (26 bits Tag + 4 bits Core-ID)
Request Queue 8-entry, 30 bits per entry

Response Queue 8-entry, ~128 bytes per entry (cache line + Core-ID)

CCN ring 4-byte request channel; 32-byte response channel; 1.4 GHz

Shadow Tag 1200 bytes size (modelled upon 48 KB L1 data cache)
tg 1 million instructions
tp 10 million instructions
Hinin 0.05 (5 percent hits)

for a large duration that follows the sampling interval. Furthermore, on the basis of
our sensitivity studies, we select the threshold hit rate (H,,;;) as 5%, i.e., the minimum
number of hits required to derive benefit from cooperative caching. We also observe
in our experiments that small 8-entry Request and Response Queues provide optimal
results. Lastly, the request and response channels in CCN are configured to flow in
opposite direction. This is because our experiments show that in such a case, servicing
reuse requests takes an average of 10 hops compared to a fixed 15 hops when both the

channels propagate in the same direction.

4.5.2 Experimental Setup

We model the Cooperative Caching Network on GPGPU-Sim (version 3.2.2) [10] to
simulate a Fermi-like GPU with the configuration parameters listed in Table 4.1. For
energy and area simulations, we use GPUWattch [98], a McPAT based power model
integrated in GPGPU-Sim. All CCN transactions have been modelled at cycle-by-cycle
accuracy in the simulator which includes queuing delays in the request and response
channels, CCN congestion and L1 cycle stealing by shadow tag accesses. We run all
the benchmarks to completion, or until they execute 16 billion instructions, whichever

comes first.

4.5.3 Results

We begin by evaluating the overall performance improvement with our proposed

schemes for benchmarks that exhibit inter-core reuse (uRC > 10). We also show

Chapter 4. Cooperative Caching for GPUs 67

| baseline mmssm CCN-B msssm CCN-RT ideal me—

1.8

17
T 16
(0]
N 15
g 14
E 1.3 F
S 12f 1
T 11f 1

Figure 4.6: Speedup for applications with uRC > 10
\ CCN-B s CCN-RT ideal m— |

2
g 1t I
= oM™ - | - o M .
g -1 I I
2 2
o
5 -3
-§ -4
o -5 415

-6 ~

Figure 4.7: Percentage improvement in IPC for applications with yRC < 3

the neutrality of our scheme for benchmarks with little or no reuse (URC < 3). Later we
assess the finer parameters for the former set of benchmarks, as applications with inter-
core reuse are the primary motivation for this study. We do not show the benchmarks
between this range, as results of the above categories are good indicators of the trend in
the rest of the benchmarks. We also compare the results of our proposed schemes, i.e.,
CCN-B and CCN-RT, against an ideal cooperative caching configuration that services
all of the remote hits with zero latency, without incurring any overheads of cooperative
caching.

Performance: In Figure 4.6, we show the speedup with CCN-B and CCN-RT
for applications that exhibit reuse. Over the baseline configuration, we observe an
average improvement of 14.5% with CCN-B and 14.7% with CCN-RT. Memory-bound
applications such as cfd, ss and pvr show higher speedup compared to non-memory-
bound applications as they are more sensitive to bandwidth bottlenecks. b+tree shows a
higher improvement than ideal case due to the timing variations in scheduling warps.

Such an aberration is also caused by a higher number of hits-under-miss on cache lines

Chapter 4. Cooperative Caching for GPUs 68

\ CCN-B _mmm CCN-RT ideal mem—

80
70
60
50
40
30
20
10

Reduction in L1 to L2 traffic (%)

Figure 4.8: Percentage reduction in L1 to L2 traffic

allocated for on-going remote L.1 accesses, which does not occur in the ideal scenario
due to zero cycle latency for remote L1 accesses.

We also assess the impact of cooperative caching on applications that show little or
no reuse. For such applications, cooperative caching adds an extra roundtrip overhead
of going through the CCN. This is because due to low uRC, most requests end up going
to L2 cache after an unsuccessful traversal in the CCN. In such cases, Request Throttler
helps in preventing the L1 misses from incurring the CCN overhead when there is little
or no reuse. In Figure 4.7, we show that with CCN-B, we see a degradation of up to
11.5% and an average degradation of 1.7% compared to the baseline GPU. However,
with CCN-RT, the maximum degradation reduces to 1.5% with an overall average of
0.1%.

L2 Cache Bandwidth Demand: In Figure 4.8, we demonstrate the effectiveness of
our proposed technique in mitigating the L2 cache bandwidth bottleneck. On average,
CCN-RT reduces the traffic to L2 cache by 29% compared to the baseline GPU. It is in
close proximity to the ideal-case average of 33% indicating that most of the reuse hits
on remote L1 caches are captured by the proposed architecture. The minimal difference
between CCN-B and CCN-RT demonstrates that, while throttling diverts most of the
non-reuse traffic directly to L2 cache, it does not reduce the number of potential hits in
the CCN. If it would divert useful reuse requests to L2 cache, bypassing the CCN, then
we would see a lesser reduction in L2 traffic with CCN-RT compared to CCN-B.

Average Memory Latency (AML): In Figure 4.9, we see an average reduction
of 24% in AML with our proposed CCN-RT architecture for applications that show
reuse. We observe that cutcp shows the maximum reduction of 65% in AML due to
a high uRC of 78%. However, it does not translate into performance gain due to its

non-memory-bound nature.

Chapter 4. Cooperative Caching for GPUs 69

\ baseline mm— CCN-B CCN-RT \

1.2
s 17
[0
N o8¢
£
*g 0.6 [
o 04
s
< 02

0
Figure 4.9: Normalized average memory latency
| baseline CCN-B mmmsm CCN-RT ideal mw—

T 12
N
E |
g o8}
3 06 ‘ ‘
2 04l | | |
E | | |
%02
2 | | |
8 o

Figure 4.10: Normalized core stall cycles

Core Stall Cycles: We observed in the above results that performance is gained by
mitigating the bandwidth problem (indicated by L2 traffic), and by servicing the misses
in less time (indicated by AML). This is because cores now spend less time waiting for
memory. Therefore, we assess the impact of our proposal on the total number of cycles
for which the cores are stalled. In Figure 4.10, we observe a significant reduction in core
stall cycles for memory-bound applications such as cfd and sc, while no degradation is
seen for non-memory-bound applications like cutcp and tpacf. On average, we reduce
the core stall cycles by 26%, which is in close proximity to the ideal reduction of 28%.

Off-chip Memory Traffic: In order to dissociate the effects of L2 and off-chip
bandwidths on the overall performance gain, we analyse the change in off-chip memory
traffic. As shown in Figure 4.11, we see that for most applications there is no visible
difference in the traffic to off-chip memory, indicating that the entire performance
improvement can be attributed to the mitigation of bandwidth bottleneck between
private L1s and the shared L2. Therefore, it can be inferred for most benchmarks that in

the baseline architecture without CCN, the reuse requests mostly hit in the L2 cache,

Chapter 4. Cooperative Caching for GPUs 70

| baseline mmssm CCN-B msssm CCN-RT ideal me—

1.2

1.1

Off-chip memory traffic (normalized)

Figure 4.11: Normalized off-chip memory traffic

thereby burdening the L2 cache bandwidth with duplicate requests. However, in sc we
notice a reduction in DRAM traffic by 12% with CCN-RT. This indicates that for sc a
significant portion of reuse requests to L2 also misses in the L2 cache, adding to the
DRAM traffic. As a result, upon removing the reuse requests to L2 cache with the help
of CCN in sc, not only the traffic to L2 cache is reduced, but also the traffic to DRAM
is reduced. Therefore, the performance benefit in s¢ with CCN-RT can be attributed not
only to the mitigation of L2 bandwidth bottleneck, but also to the mitigation of DRAM
bandwidth bottleneck.

Summary: In the above results, we observed that for applications which exhibit
reuse, we are able to reduce the traffic to L2 cache by 29% while also reducing the
average memory latency by 24%. As a consequence of the above improvements,
we reduce the average core stall cycles by 26%, which translates into an average

performance improvement of 14.7%.

4.5.4 Hardware Cost

Area: We use GPUWattch [98] to estimate the area of our proposed architecture.
We use the existing components in GPUWattch to model the CCN components, after
appropriate scaling wherever necessary. CCN adds an area overhead of 4.38 mm? for
the ring interconnect and the shadow tags (corresponding to the largest L1 data cache
configuration) at 40 nm technology. Other storage units such as CCN Buffers and
Request/Response Queues add another 4.82 mm?. This amounts to an overall increase
in die area by 1.3% compared to the baseline processor area of 700 mm?.

Energy: With CCN, cores are stalled for fewer cycles, thereby reducing the leakage

power. In addition, fewer packets require routing at the energy-inefficient crossbar

Chapter 4. Cooperative Caching for GPUs 71

\ baseline mm— CCN-RT \

1.12
1.08
1.04

0.96
0.92 -
0.88
0.84

Energy (normalized)

(o)
6x % /6« éo

7 S) o) & &
. % % % >, o % 2. '{'/)) 0, N/
% o, %, 0

Figure 4.12: Energy dissipation with CCN

‘ baseline-16/48 CCN-16L1 CCN-48L1 s
1.7
1.6
1.5
1.4
1.3
1.2
1.1 ¢

1 L
0.9

IPC (normalized to resp. baselines)

Figure 4.13: Speedup with varying L1 cache size

routers. Also, lower traffic to L2 leads to lower energy consumption by the NoC.
However, high shadow tag lookups for remote cache accesses normalizes other energy

gains of the CCN, resulting in an average energy overhead of 2.5% (Figure 4.12).

4.5.5 Sensitivity Analysis

L1 Cache Size: As Fermi offers configurable L1 cache sizes of 16 KB and 48 KB,
we analyse the sensitivity of our proposal to L1 cache size. As shown in Figure 4.13,
with an L1 cache size to 48 KB we observe an average IPC gain of 20.6% with CCN,
compared to 14.7% with CCN with 16 KB L1 (over their respective baselines with
CCN). This is due to the following reason: although increasing the L1 cache size
reduces the number of capacity/conflict misses, thereby reducing the opportunities to
find remote L1 hits in the CCN, we observe that a larger L1 significantly increases
the likelihood of finding a remote L1 sharer for a compulsory miss. Therefore, due to
significant increase in utility of CCN for compulsory misses on increasing the L1 size
(which dominates the decrease in utility of CCN due to lower conflict/capacity misses),

we observe a higher improvement in performance with larger L1s.

Chapter 4. Cooperative Caching for GPUs 72

\ baseline m— 1-cycle mmmmm 3-cycles 5-cycles mmmmm

15
1.4
13 |
12}
11 F

IPC (normalized)

0.9

4) 4
X &'@ 6 O{S‘
) 0 ”

7
% S o % By T O S 4 T
(o4 %, Vo 23 2 Q)

Figure 4.14: Speedup with link latencies of 1, 3 and 5 cycles

Link Latency and Frequency: In this study, we analyse the performance impact
of interconnect latencies for every hop on the CCN ring. This is done by varying the
core-to-core transfer latency from 1-5 cycles (i.e., 15-75 cycles to traverse the entire
ring). For a 700 mm? chip, each hop is approximately 3.5 mm of on-chip distance, and
therefore 1-5 cycles at 1.4 GHz is a reasonable window to complete the transfer [15]. It
1s worth noting that varying the CCN link latency also captures the effect of running the
CCN ring at a fraction of core frequency. Therefore, this study shows the performance
variation on using the CCN ring at up to 1/5" the core frequency (280 MHz).

In Figure 4.14, we see that for most applications, the IPC gain is fairly resilient
to increasing link latencies (or decreasing ring frequencies). For instance, cfd shows
a marginal reduction of 1% when the latency increases from 1 to 5 cycles. Only a
minority of applications show visible reductions in the gain as link latency increases.
For example, the IPC gain of b+tree drops from 31% to 19%, although it still maintains
a modest overall improvement in performance. On average, we see IPC improvements
drop from 14.7% to 13.6% as latency is increased from 1 to 3 cycles, settling further
at 11.2% when the link latency is increased to 5 cycles. These results indicate that our
proposed scheme is fairly robust to increasing latencies in the ring interconnect (as well
as increasing distance between the neighbouring cores).

SIMD Lane Width: Each core in NVIDIA’s Fermi GPU consists of a 32-lane SIMD
unit, each lane capable of executing one floating-point or arithmetic instruction per
clock. In this study, we analyse the impact on CCN of increasing the SIMD lane width.
In Figure 4.15, we plot the performance gain with CCN-RT on baseline configuration
with varying SIMD lane width of 32 (ccn-32), 64 (ccn-64), 128 (ccn-128) and 192
(cen-192), each normalized to their respective baselines. On average, the performance
gain drops modestly from 14.7% to 13.6% on increasing the SIMD lane width from
32 to 64, settling further at 11.4% and 10.2% with SIMD lane widths of 128 and

Chapter 4. Cooperative Caching for GPUs 73

| baseline mmm ccn-32 mmm ccn-64 ccn-128 mem ccn-192 \
1.5
1.4
1.3 4
1.2 |

11 F

1
0.9

IPC (normalized to resp. baselines)

&
S N 7

Figure 4.15: Speedup with varying SIMD lanes

192 respectively. Although the minor reduction in CCN gain is due to the increased
latency tolerance provided by additional SIMD lanes, cooperative caching continues
to provide considerable benefits for memory-intensive applications. This is due to the
fact that by increasing the number of SIMD lanes or the compute capability of the
cores, only compute-bound applications are expected to show significant speedups and
a higher overlap of memory latencies with computation. In contrast, memory-intensive
applications lack independent instructions and continue to be constrained by memory
resources. Therefore, additional compute resources for memory-intensive applications
provides only limited additional latency tolerance to the cores due to which cooperative
caching continues to be useful in reducing memory latencies that lie in the critical path.
However, some benchmarks such as /ud and km also show momentary improvement
in performance gain with CCN on increasing the SIMD lane width. We observe that
this is because with wider SIMD lanes, higher number of threads perform memory
instructions on each cycle, issuing higher number of requests that may exhibit reuse,
thereby amplifying the utility of CCN in reducing the traffic that could lead to even

higher congestion.

4.5.6 Discussion

In future, scalability of the CCN can be addressed by a hierarchical implementation of
the proposed ring network [61, 129]. A sub-CCN-ring that contains the requesting core
can inquire other sub-CCN-rings in parallel, thereby decomposing the serial latency
of traversing the high number of cores into concurrent transactions to multiple rings.
In addition, as coherent caches are imminent with future architectures [109, 127, 143],
CCN can also act as a substrate for implementing cache coherence by providing a means

for inter-core communication.

Chapter 4. Cooperative Caching for GPUs 74

\ bank12 bank24 mmmmm bank12/CCN bank24/CCN mmmmm
1.7
1.6
1.5
1.4
13
1.2 r
1.1 -

IPC (normalized)

0.9

Figure 4.16: Speedup with 2x L2 banks and CCN

4.6 Comparative Study

In this section, we perform a quantitative and qualitative comparison of CCN with

alternative techniques that address the bandwidth bottleneck in GPUs.

4.6.1 Increasing L2 Banks

An alternative technique to increase the bandwidth to L2 is to increase the number
L2 banks. However, increasing the banks only reduces the congestion in the access
path to L2 whereas CCN, in addition to reducing pressure on .2 bandwidth, provides
a significantly faster response for a fraction of miss requests. In our experiments, we
observe that CCN services the reuse requests in 42 cycles (/¢ys.) on average, for 29%
misses (Ayeyuse) that hit in CCN. For the remaining 1.2 accesses, CCN adds a roundtrip
overhead of 54 cycles (&yyerneaq)- It also reduces the congestion overhead to L2 by 78
cycles (8cong). Considering that the average L2 access latency without the CCN is 300
cycles (lp) and substituting the above values in Equation 4.1, the average L2 access

latency with CCN is computed to be 208 cycles (Equation 4.3).

lecony = (300 — 78 +54) x 0.71 4 (42) x 0.29 = 208 4.3)
Ic@ax) = (300 —80+0) x 1.0 = 220 (4.4)
lecen/axy = (300 — 117 +54) x 0.71 4 (42) x 0.29 = 180 (4.5)

However, increasing the L2 banks only reduces d.,ng (though marginally more than
CCN for some benchmarks), but requires all accesses to go through the L2 access latency,
albeit via reduced congestion. Upon substituting corresponding values in Equation 4.1,

the reduced L2 access latency is computed to be 220 cycles (Equation 4.4). As a result,

Chapter 4. Cooperative Caching for GPUs 75

in Figure 4.16 we observe an average performance improvement of 10.2% upon a 2 x
increase in L2 banks from 12 to 24. In contrast, CCN implemented with 12-bank L2
configuration shows a higher improvement of 14.7% (with cfd performing 34% better
with CCN than with 2x L2 banks).

Importantly, CCN is partly orthogonal to increasing the banks at L2. This is because,
in addition to reducing the 8,g further, CCN adds the benefit of faster access to reuse
requests. The average L2 access latency in Equation 4.1 for a CCN architecture on a 24
L2 banks configuration is computed to be 180 cycles (Equation 4.5). In Figure 4.16,
our experiments show an average performance improvement of 23.5% with both the
techniques combined.

With respect to the cost, increasing the L2 banks would require higher number of
ports in the crossbar. As the area of a crossbar increases polynomially on increasing the
ports, the area overhead will be significant. Energy demands also increase significantly
as each router is more complex and need to arbitrate on higher number of nodes. In
contrast, CCN only require simple multiplexers at each router and scales well with
respect to area and energy overheads. Alternatively, increasing the L2 data path width to
provide more 1.2 bandwidth would also be area intensive as it entails increasing the area
of 15x12 core-to-L.2 connections in the crossbar, making the crossbar much bulkier. In
contrast, CCN only requires 15 core-to-core connections. As core-to-L2 connections
are typically longer (in addition to being higher) than core-to-core connections in CCN,

there is a higher overhead in scaling the former.

4.6.2 Sharing Tracker

Tarjan and Skadron [149] proposed a scheme to exploit reuse within the private caches
by using a Sharing Tracker, a decomposed version of the coherence directory. It aims to
reduce the off-chip memory bandwidth demand by diverting DRAM accesses to private
caches that contain a shared copy. Although we adopt a similar intuition to reuse shared
copies in private caches, our aim is to reduce the bandwidth demand to the shared cache
(and not the DRAM as in [149]). This is because in recent GPU architectures, exploiting
reuse does not considerably reduce off-chip memory traffic (as shown in Figure 4.11),
and hence a common directory in shared cache is not expected to show any benefit since
there are not many off-chip memory accesses that it can avoid. In fact, since accessing
and maintaining the sharing tracker in L2 cache adds to the bandwidth demand to L.2

without relieving pressure on off-chip bandwidth, it will only exacerbate the problem

Chapter 4. Cooperative Caching for GPUs 76

| baseline mmmm cluster03 mmssm cluster05 CCN
1.5
1.73
-~ 14
°
(9]
N 13
[
E 12t
o
£
o M7
o
o 1L
0-9 b, Co B b S S O B K O, S 4. 9
8 7o) < . o) <,) Z ®
A A T °
7

Figure 4.17: |deal speedup with L1 cache clusters

by increasing L2 access latencies, thereby worsening the performance with respect
to baseline. For those architectures where off-chip memory traffic is also reduced by
exploiting sharing within private caches, CCN achieves the same, but in addition, it
also reduces the traffic to L2 (which we have shown to be critical to performance), and

therefore provides a significant advantage over a directory approach.

4.6.3 Clustered Sharing

Keshtegar et al. [77] proposed an architecture to enable restricted sharing within core
clusters. However, we have shown in Figure 4.2 that while some benchmarks show
higher reuse with neighbouring cores, others show a uniform sharing with all cores. In
Figure 4.17, we show the ideal performance improvement (with no sharing overheads)
obtained by sharing within cache clusters and we compare it with an ideal case of CCN
(sharing among all cores). We observe an average performance gain of 4% and 8% with
ideal clusters of 3 and 5 L1s respectively, compared to an average performance gain
of 21% with ideal CCN. This suggests that for most benchmarks, upon restricting the
sharing within cache clusters, SMs lose out on a large portion of reuse possibilities.
Moreover, the cluster-based proposal by Keshtegar et al. employs a mesh-type
network within a cluster and scales polynomially with the number of cores. Therefore,
we expect the area overhead of clusters to exceed the area of ring-based connections in
CCN which scales linearly with the number of cores. Furthermore, in current GPUs,
SMs are placed linearly around the central L2 cache [115, 116], and therefore, clusters
would require longer wires to connect the far-ends of a cluster as compared to only

near-neighbour connections in CCN.

Chapter 4. Cooperative Caching for GPUs 77

4.6.4 Summary

In this section, we have shown that CCN fares well in comparison with alternative
techniques. CCN performs better than simply increasing the number of L2 banks while
also being partly orthogonal to the latter technique. Sharing tracker is expected to show
negative performance gain with the baseline architecture; and restricted sharing within

cache clusters significantly reduces the opportunity to capture inter-core reuse.

4.7 Related Work

While sharing across L1 caches is a common occurrence in multiprocessors, as em-
phasized by the prevalent use of sophisticated coherence infrastructure, we derive
significant benefits by exploiting L1 sharing for GPGPU workloads, a property atypical
in GPUs. Additionally, in contrast to earlier works [73, 167] where only the off-chip
memory bandwidth is considered critical to performance, we identify the criticality
of mitigating congestion in the on-chip cache hierarchy between L1 and L2 cache. In
the following subsections, we further discuss several prior works related to the ideas

presented in CCN and cite their key differences.

4.7.1 Cooperative Caching in CMPs

In the realm of CMPs, Chang and Sohi [23, 24] proposed cooperative caching by
adapting the coherence infrastructure. Subsequently, Herrero et al. [59] proposed a
scalable distributed cooperative caching scheme by re-designing the coherence engine
to provide distributed directories. Both schemes aim to provide aggressive latency and
capacity benefits for on-chip caches in CMPs. However, since GPUs are relatively more
tolerant to latencies, in this chapter we address the problem pertaining to bandwidth in
GPUs. In addition, a directory-based scheme is not directly portable to GPUs due to the
lack of coherence infrastructure, and therefore our solution proposes an independent

lightweight network.

4.7.2 Ring Network

Ring topologies have been used extensively in commercial multiprocessors to provide
low cost inter-core communication. Intel’s Larrabee [138] employs a bidirectional ring

network to allow on-chip communication between latency-sensitive CPU cores, coherent

Chapter 4. Cooperative Caching for GPUs 78

L2 caches and other blocks with each link being 64 bytes wide (net width of 128 bytes).
Xeon-Phi [31] also uses bidirectional rings with each ring comprising three independent
rings, viz., a 64 bytes data block ring for data transactions, an address/command ring,
and an acknowledgement ring for coherence and flow control messages (net width >128
bytes). In contrast, CCN enables bidirectional communication between latency-tolerant
GPU cores by connecting the incoherent L1 caches in a ring. Due to relaxed latency
constraints in CCN compared to prior ring interconnects in multiprocessors, the bus
width for inter-core transfers is smaller with each link being 8 bytes and 32 bytes
wide respectively (net width of 40 bytes). Therefore, our proposal exploits the latency-
tolerance property of multithreaded cores to provide low cost inter-core communication
through a lightweight ring network.

Furthermore, Campanoni et al. [20] proposed a ring cache for HELIX-RC that acts
as a distributed first-level cache, preceding the private L1 cache. Each ring node has
a cache array to cache shared data and satisfies the loads and stores received from its
attached core. To avoid coherence complications, memory addresses are permanently
mapped to the nodes of the ring cache. In contrast, each node in the CCN ring network
comprises a shadow tag array, needed only for lookups and not for storage of shared data.
Subsequent loads to the shared data via CCN are performed directly in the corresponding
L1 caches since there is no separate data array for the ring nodes. Therefore, the nodes in
the CCN ring network are lighter than nodes in the ring cache proposed in HELIX-RC.

In parallel to the work presented in this chapter [35], Zhao et al. [174] proposed
LA-LLC, a mechanism to exploit inter-core locality by using latent bidirectional core-to-
core connections in the 2D mesh network, which they consider as a baseline NoC in their
study. In their proposal, they maintain sharing information in the L2 cache lines, and
redirect requests back to a remote L1 cache if a sharer is detected, via the bidirectional
request network. Subsequently, the remote core sends the shared data to the requesting
core through core-to-core connections in the response network. However, modern
GPUs often employ unidirectional networks for request and response paths where
core-to-core connections do not exist [141], requiring us to introduce a lightweight ring
for core-to-core connections in this work. Furthermore, introducing fully-connected
crossbar or mesh routers with core-to-core connections can be expensive with respect to
area and energy overheads, as such routers scale polynomially with respect to hardware

overheads with increasing connections between nodes.

Chapter 4. Cooperative Caching for GPUs 79

4.7.3 Shadow Tags

Prior proposals such as Piranha [12] and Niagara [85] have replicated tag structures of
the private L1 caches at the shared L2 cache. Such duplicate L1 tags stored centrally in
the L2 cache are typically used to construct partial sharing information, thereby reducing
indirections to the coherence engine. Duplicate tag structures are also used to reduce
redundant write-back traffic to L2 cache from multiple L1s that cache the same shared
data. However, in CCN we replicate the tags adjacent to the corresponding L1 caches
and do not complicate the L2 cache control. It is used only to prevent deterioration
of L1 cache performance due to remote lookups. Moreover, tag updates to shadow
tags incur minimum communication overhead in CCN due to physical proximity of L1

caches and shadow tags.

4.7.4 Cache Management

In the field of GPUs, prior proposals such as Sharing Tracker [149] and cluster-based
schemes [77] (discussed previously in Section 4.6) exploit reuse within GPU cores
via central directory and clustered caches, respectively. Several other schemes have
been proposed for GPUs to improve the effective on-chip cache capacity, reduce cache
thrashing and improve locality in L1 and L2 caches. Rhu ef al. [130] proposed a locality-
aware memory hierarchy which adaptively adjusts the memory access granularity to
prevent over-fetching, providing better off-chip bandwidth utilization. Furthermore, Li
et al. [101] proposed a tag-split cache to enable fine storage granularity to improve cache
utilization, while keeping a coarse access granularity to avoid excessive cache requests.
Tarjan et al. [150] proposed a scheme to tolerate memory miss latencies for SIMD cores
by masking out threads in a warp which are waiting on data and allowing other threads to
continue execution, hence utilizing the idle execution slots. Rogers et al. [132] proposed
a scheduling policy to minimize cache thrashing by monitoring the lost locality in the
L1 data cache. Jia et al. [69] presented a taxonomy for memory access locality and
proposed a compile-time algorithm to selectively utilize the L1 caches. Narasiman et
al. [113] proposed large warp architecture and a two-level warp scheduling technique
to make effective use of resources on GPU. Jog et al. [72] proposed a thread block
aware scheduling policy to improve the cache hit rates of L1 cache. Choi et al. [30]
employed techniques such as write buffering and read bypassing to reduce DRAM
traffic and improve the L2 cache utilization, thereby addressing the bandwidth constraint

between shared cache and DRAM. There has also been work on cache management

Chapter 4. Cooperative Caching for GPUs 80

policies for heterogeneous CPU-GPU architectures. Yang et al. [166] proposed a CPU-
assisted prefetching scheme to improve the GPU memory latencies by localizing the
data in the LL.C cache. Lee and Kim [93] proposed a TLP-aware cache management
policy to effectively utilize the LLC for general-purpose workloads. Broadly, the above
cache management proposals focus on reducing the miss rate of independent caches
by improving cache utilization. In contrast, CCN reduces the collective bandwidth
demand of L1 on L2 by diverting some of the misses to remote L1s, without necessarily
reducing miss rate of independent L1 caches. Hence, the above mentioned techniques
that reduce the miss rate of individual caches are expected to be orthogonal to our work.
Given the severity of the memory bottleneck in GPUs (as indicated by the magnitude
of PerfX in Table 4.2), no technique alone solves the entire problem, and hence such
orthogonal techniques can be used in conjunction with CCN.

In order to mitigate the severity of cache thrashing, several cache bypassing tech-
niques have also been proposed'. In CPUs, Gaur et al. [47] proposed a bypass policy to
selectively fill the exclusive last-level cache with evicted cache blocks from the higher
level. Further, Duong et al. [38] proposed a policy to protect reusable cache lines
from eviction with a dynamically computed Protected Distance, and bypass the miss
requests upon lack of unprotected cache lines in a set. In GPUs, high multithreading
and low on-chip cache capacity per thread present additional challenges due to severe
cache thrashing. Chen e al. [28] proposed a dynamic cache management policy that
combines L1 cache bypassing and throttling. In their proposed scheme, warp throttling
prevents over-saturation of on-chip cache resources while cache bypassing prevents
cache contention, requiring lower number of warps to be throttled in comparison to
standalone warp throttling schemes. Li et al. [99] proposed a locality-driven cache
bypassing scheme that uses reuse frequency in a decoupled and extended tag memory
to allow allocation in the data memory for only those cache lines that exhibit high reuse.
In summary, these cache bypassing schemes in GPUs improve cache utilization by
reducing cache thrashing of individual L1 caches. By preventing eviction of cache lines
with high reuse, it helps in eliminating repeated reuse requests from the same L1 cache
to the L2 cache. However, in our proposed technique, we eliminate the reuse requests
from different L1 caches to the L2 cache. In other words, cache bypassing techniques
reduce intra-core reuse requests that access the L2 cache, whereas our proposed tech-

nique reduces inter-core reuse requests that access the L2 cache. Therefore, we expect

Some of the cache bypassing techniques discussed here have also been discussed in the related work
for Chapter 3, but succinctly included here for completeness in the current context.

Chapter 4. Cooperative Caching for GPUs 81

our proposal to be complimentary to cache bypassing techniques as both techniques

help in reducing mutually exclusive set of requests to the L2 cache.

4.7.5 Thread Block Scheduling

Inter-core reuse, as shown in this chapter, arises due to sharing of data across different
thread blocks (TB) that are scheduled on different SMs. This reuse can also be captured
by scheduling such thread blocks, that share data, on the same SM. Li et al. [102]
proposed a software-based scheme to exploit inter-TB locality by manipulating thread
block scheduling. In their proposal, they cluster the thread blocks that are expected to
exhibit inter-TB locality and schedule them concurrently or consecutively on the same
SM, thereby exploiting reuse through the private L1 cache. While their proposal does
not require any hardware changes, it limits the thread blocks that can reuse data amongst
each other. This is because only a few thread blocks can be scheduled on the same
SM due to occupancy constraints of each SM, thereby limiting the extent of inter-TB
reuse. In Section 4.6.3, we have already shown that limiting sharing within a cluster
of SMs (or a cluster of thread blocks) reduces the opportunities for sharing and can be
sub-optimal. Moreover, data within thread blocks on an SM can be shared only through
a small L1 data cache, whereas inter-core sharing proposed in this chapter spans across
multiple L1 caches, thereby increasing the sharing opportunity due to higher effective
on-chip storage that participates in sharing.

Several hardware approaches have also been proposed to alter the thread block
scheduling policy to improve performance. Kayiran et al. [75] proposed DYNCTA to
regulate the number of thread blocks available on each SM. DYNCTA modifies the
thread-level parallelism in the system at the granularity of thread blocks, on the basis of
some observable application characteristics, in order to mitigate resource contention.
However, it is not aimed at harvesting inter-TB locality. Lee et al. [96] also proposed to
reduce the number of thread blocks available on each SM to reduce resource contention.
In addition, they also aim to extract inter-TB locality by scheduling consecutive thread
blocks on the same SM. It is based on the observation that sequential thread blocks are
more likely to share data. As a result, it restricts inter-TB locality to be harnessed only
within a handful of consecutive thread blocks that are assigned on the SM. However,
as observed in the heatmaps shown in Figure 4.2, reuse is not limited to neighbouring
SMs (or neighbouring thread blocks) and shows different patterns across different

applications. Therefore, restricted sharing between neighbouring thread blocks is again

Chapter 4. Cooperative Caching for GPUs 82

expected to be sub-optimal. More recently, Wang et al. [155] proposed LaPerm, a
thread block scheduling mechanism that schedules parent and child thread blocks on
the same SM to maximize parent-child locality. Therefore, they target only a special

type of inter-TB locality in their scheme, and is more restrictive than CCN.

4.8 Conclusion

In this chapter, we address an inefficiency in the management of L1 caches in GPUs.
We show that as a consequence of high L1 miss rates, high traffic to L2 cache leads
to a bandwidth bottleneck between L1 and L2, which in turn leads to high L2 access
latencies. In memory-intensive applications, multithreading is unable to hide such high
latencies, making it critical for performance.

For general-purpose applications, we discover considerable potential for data reuse
within the L1 caches. We exploit this opportunity to reduce the miss traffic to the L2
cache, and thereby reduce the L2 cache bandwidth demand. To achieve this, we present
a Cooperative Caching Network which services the L1 load misses cooperatively via a
lightweight ring network. We show that GPUs can tolerate reuse latencies gracefully
up to 80 cycles, and therefore a ring topology appears to be a cost-effective solution,
as it allows us to trade-off higher latencies for simplicity and short wires, i.e., lower
power consumption and die-area cost. We also use shadow tag memory, adjacent to
each L1 data cache, to decouple the local L1 cache performance from remote L1 cache
tag lookups. For applications that do not exhibit any inter-core reuse, we detect the
lack of sharing at runtime and prevent the L1 miss requests from incurring the CCN
overhead, sending them directly to the L2 cache. For applications that exhibit reuse,
our technique improves the IPC by 14.7% while being neutral to applications that show
little or no reuse. We likewise reduce the traffic to L2 cache by 29%, and reduce the
average memory latency by 24%. As a result, we reduce the total core stall cycles by
26%. Alongside the above improvements, CCN presents an area and energy overhead
of 1.3% and 2.5% respectively, and compares favourably with alternative techniques

that address the bandwidth issue.

Chapter 5
Managing Thread-level Parallelism

GPUs are increasingly used in upcoming application domains such as Deep Learning,
Autonomous Driving and Medical Diagnosis. In such emerging applications, high
degrees of thread-level parallelism (via multithreading) are normally required. However,
the consequent increase in demand for memory resources, such as caches and memory
bandwidth, gives rise to problems such as cache thrashing [66, 67] and bandwidth
bottlenecks [36]. Mitigating the above problems by reducing multithreading, however,
comes at the cost of restricting parallelism. Due to this tension between thread-level
parallelism (TLP) and memory system performance, balancing the two properties to

maximize system throughput poses a significant challenge in GPUs.

5.1 Overview

In GPUs, L1 data cache is one of the most scarce memory resources, and is therefore
most vulnerable to cache thrashing. To improve the L1 caching efficiency, several warp
scheduling techniques have been proposed that limit the degrees of multithreading.
For instance, warp throttling techniques [132, 133] have been effective in mitigating
cache thrashing by limiting the number of warps that can execute on an SM at a
given time. However, by restricting parallelism, shared system resources such as on-
chip interconnects and DRAM may become underutilized. Previously, to address the
above limitations, Priority-based Cache Allocation (PCAL) [100] has been proposed,

classifying warps into two categories, which are referred in this chapter as follows:

1. Monitored warps: Warps that are needed to maintain a sufficient degree of paral-

lelism in the system, without being directly concerned about cache performance.

83

Chapter 5. Managing Thread-level Parallelism 84

Maximum warps Monitored warps
w1 W2 W3 W4 w1 w2 w3 w4
R RN R RN 2
Cache Thrashing Cache-polluting Warps

L1 cache @ @ @ L1 cache

Figure 5.1: Cache footprint with maximum warps and reduced warps

2. Cache-polluting warps: A smaller subset of the above monitored warps that are
allowed to make allocations and evictions in the L1 cache, in order to maximize

cache performance.

The above categorization is depicted in Figure 5.1. In summary, this categorization
provides a set of two knobs that can be used to fine-tune TLP and memory system
performance, thereby reducing cache thrashing and alleviating bandwidth bottlenecks.
However, in order to arrive at the optimal number of monitored warps, PCAL employs
traditional methods such as iterative hill climbing (detailed discussion in Section 5.3).
Such an approach suffers from two major limitations: firstly, hill climbing techniques
are susceptible to local optima; and secondly, iterative search can take a long time to
converge, particularly in hardware. For these reasons, PCAL is limited in its effective-
ness.

Goal: The key goal of this work is to find a good balance between TLP and
memory system performance, and to do so expeditiously in hardware. To achieve
this balance, we borrow the basic intuition from PCAL to classify warps into two
categories, i.e., monitored warps and cache-polluting warps, and use them as knobs
to maximize throughput. However, we depart from previous search techniques to find
a good composition of warps in each category, overcoming the shortcomings of prior
proposals. Note that throughout this chapter, we refer to this dual category of warps as
a warp-tuple.

Proposal: In this chapter, we propose Poise, a different approach to balance TLP
and memory system performance via the warp scheduling mechanism. Poise comprises
two major components — a statistical machine learning framework and a hardware
inference engine. The machine learning framework uses a supervised learning model,
that is trained offline on a set of profiled kernels using sample input-output pairs. The
training set comprises the warp-tuple that resulted in the best performance for a kernel

(the output), and the corresponding set of architectural and application features of that

Chapter 5. Managing Thread-level Parallelism 85

kernel (the input). The input features are carefully chosen using a detailed analytical
model. Thereafter, we use a regression model to learn a mapping from the selected
architectural and application features, to the chosen warp-tuple. The learned mapping is
provided to the hardware via the software or the compiler.

At runtime, the hardware inference engine samples the architectural and application
features using hardware performance counters, and uses the mapping that was learned
during training to dynamically predict the chosen warp-tuple. To safeguard against
statistical errors in prediction, the inference engine performs a focused heuristic search
in the near vicinity of the prediction to find a better warp-tuple, if any. This adds
resiliency to Poise against minor statistical errors arising from the machine learning
framework. The final warp-tuple is used by the warp scheduler to alter the number
of monitored warps and cache-polluting warps, in order to improve memory system
performance, while also maximizing system throughput.

Across a set of benchmarks that were unseen during training, Poise achieves a
harmonic mean speedup of 46.6% (up to 2.94 x) over the baseline greedy-then-oldest
(GTO) warp scheduler that employs maximum number of warps. It also outperforms
the prior state-of-the-art warp scheduler, PCAL, by an average of 15.1%.

Organization: The remainder of this chapter is organized as follows. Section 5.2
provides the necessary background relevant to this work. Section 5.3 motivates the
problem of balancing thread-level parallelism and memory system performance in GPUs
and illustrates the shortcomings of prior techniques. Section 5.4 presents a system-level
overview of our proposed Poise mechanism. Section 5.5 presents the machine learning
framework in form of an analytical model and a regression model. The analytical model
is used to reveal the most representative architectural and application features that
should be used for learning. The regression model learns a mapping from the revealed
application and architectural features to the warp-tuples that yield best performance.
Section 5.6 presents a hardware inference engine to predict good warp-tuples based on
the observed runtime features and the learned mapping, which is used to alter scheduling
decisions dynamically. Section 5.7 evaluates the proposed mechanism and presents the
results. Section 5.8 presents the related work and Section 5.9 concludes the work by

summarizing our key contributions and results.

Chapter 5. Managing Thread-level Parallelism 86

Table 5.1: Baseline architecture parameters for GPGPU-Sim

Parameter H Value
SMs 32
Clock frequency Core @ 1.4 GHz; Crossbar/L2 @ 700 MHz
Schedulers per SM 2, greedy-then-oldest (GTO) scheduler
Max warps per SM 48 (24 per scheduler)
Max threads per SM 1536
SIMD width 32
Registers per SM 32768
Shared Memory 48 KB
L1 Data Cache 16KB, 128B line, 4-way,
LRU, Hash Set-Indexed, 32 MSHR entries
Interconnect 32 %24 Crossbar, Fly-topology, 32B flit
L2 Cache 2 MB, 24 banks, 8-way, 128-byte line, LRU
DRAM GDDRS5 DRAM @ 924 MHz, 6 Memory Partitions, 384 bits buswidth

5.2 Background

In this section, we provide the necessary background for this chapter with a brief

discussion about the baseline architecture and supervised learning.

5.2.1 Baseline Architecture

In this study, we consider a baseline modelled on a modern GPU, comprised of 32 SMs,
16 KB L1 data cache and 2 MB L2 cache. Each SM can support up to 1536 concurrent
threads and up to 48 warps. There are 2 warp schedulers per SM for high throughput
issue. Each warp scheduler equally distributes the scheduling load and manages a
maximum of 24 warps each at any given time. The baseline parameters are summarized

in Table 5.1.

5.2.2 Supervised Learning

Supervised learning is a machine learning technique, which uses a training set com-
prising a set of input-output pairs, and constructs a mapping from the input to the
output by analysing the training data. The learned mapping is used to make predictions

or inferences about the output on unobserved input data. The set of input variables

Chapter 5. Managing Thread-level Parallelism 87

that are used for training are often referred to as the feature vector. In this work, the
input feature vector comprises a set of observable properties of the architecture and
application; and the output comprises the warp-tuple that results in the optimal (or
near-optimal) performance for a kernel (discussed in Section 5.5.2).

Feature Selection: The accuracy of the model depends highly on the selection of the
feature vector. While correlation techniques [54, 22] and genetic algorithms [3, 92] are
commonly used for selecting a set of representative features, domain knowledge can be
leveraged by constructing robust theoretical models [125, 16] to discover a reliable set
of features (as shown in Section 5.5.1). This can help reduce the dimensionality of the
feature vector to truly representative features and significantly improve the prediction
accuracy.

Regression Analysis: Supervised learning algorithms such as Generalized Linear
Models (GLM) borrow heavily from statistics [43, 44], and are often referred to as
statistical machine learning algorithms [90, 19]. In this work, we use Negative Binomial
regression [117] from the family of Generalized Linear Models. In this regression model,
the output follows a negative binomial distribution. The learned mapping from the input
to the output is expressed through a set of feature weights for each corresponding input
in the feature vector. The logarithm of the output is expressed as a weighted sum of

input features (as shown in Section 5.5.4).

5.3 Motivation

Since the wide adoption of on-chip memory hierarchies in GPUs [49, 116], several warp
scheduling techniques have been proposed to maximize cache performance. In this
section, we discuss two prior state-of-the-art techniques and analyse their limitations.
Consequently, we motivate the need for an alternative approach that addresses prior

shortcomings. We discuss other related and orthogonal techniques in Section 5.8.

5.3.1 Cache-Conscious Wavefront Scheduling

Rogers et al. [132] proposed Cache-Conscious Wavefront Scheduling (CCWS), a warp
throttling technique to adaptively limit the number of warps, thereby reducing cache
thrashing. In their scheme, they maintain Lost Locality Score (LLS) for each warp that
indicates the potential cache hits lost by each warp due to cache thrashing. This is done

by employing a victim tag array (VTA), which is a modified version of the victim cache.

Chapter 5. Managing Thread-level Parallelism 88

VTA stores the tag and warp information for the cache lines evicted by the L1 cache.
For every L1 miss, the VTA is probed and the LLS is incremented if the load request
hits in the VTA. Warps with higher LLS, above a cumulative cutoff, are given exclusive
access to the L1 cache. The remaining warps with lower LLS are prevented from issuing
load instructions in order to reduce cache thrashing. Due to the high hardware overhead
of CCWS, the authors also discuss Static Warp Limiting (SWL), an offline profiling
based technique to determine the appropriate extent of throttling for each benchmark.
This is done by characterizing each benchmark for every possible level of throttling,
and selecting the number of warps that led to best performance. They also note that
static SWL outperforms dynamic CCWS due to the runtime overheads of the latter. In
SWL, however, every new benchmark needs to be profiled as it does not utilize any

prior knowledge acquired from other benchmarks.

5.3.2 Priority-based Cache Allocation

While CCWS successfully improves cache performance by reducing cache thrashing, it
severely restricts the thread-level parallelism in the GPU. Li ef al. [100] observed that
throttling also leads to under-utilization of shared system resources. Consequently, they
proposed Priority-based Cache Allocation (PCAL) to decouple parallelism and cache
performance. In their scheme, they classify warps into two categories — referred in this
chapter as monitored warps and cache-polluting warps. Firstly, monitored warps are
a group of warps that are allowed to participate in the overall multithreading and are
used to meet the high parallelism needs of an application. Secondly, cache-polluting
warps are a subset of monitored warps that have full cache privileges and are allowed
to make allocations and evictions in the L1 cache. Cache-polluting warps are controlled
to maintain satisfactory levels of cache performance. Throughout this chapter, we refer
to the number of monitored warps as “N”’ and the number of cache-polluting warps as
“p”. PCAL aims to find a balance between TLP and cache performance by varying N
and p.

In the proposed scheme, PCAL starts by employing the CCWS policy to find
the right level of initial throttling. Taking the result of CCWS as the starting point,
PCAL performs a search in the {N, p} solution space. First, p is varied in parallel
across different SMs for a specified duration of sampling. Thereafter, different SMs
determine the best performing p through parallel voting. The parallel voting mechanism

is managed by a finite-state machine and selects the p that led to best performance. The

Chapter 5. Managing Thread-level Parallelism 89

16 [=— p=N ——p=1]
15
speedup 15
14 o o
© slowdown 145 |
— 13 o o
n 14
Q 12 °o o
¢ | | cows 63 SN
o> 10 ° o 0o e 13 L Performance | cCws
c X MAX = ’
= 9 6000000 S o5 Valley + PCAL
> = .
= 8 o] 0 6 0 = ¥ MAX
8. 7 000 e 12
E 6 © 00 o0 5 1.15
g s ° o o0 0 °o o0 o 14
3 4] o o
o 1.05
2 | 1 L
1| e K 0.95
0
0123 45 % 7 604041 1248944546 1284567 80910111213141516
N (monitored warps) N (monitored warps)
(a) Navigating the solution space (b) Performance peaks and valleys

Figure 5.2: Static profiling of ii kernel #112

best performing p chosen through voting is applied to all SMs. The selected number
of cache-polluting warps are maintained until some SM suffers a drop in performance
that is greater than a predefined threshold, at which point SMs trigger another round
of sampling and parallel voting. Next, the number of monitored warps, NV, are selected
through an iterative search by hill climbing. To achieve this, the PCAL control unit
monitors the shared resources and starts increasing N by one warp at a time if the shared
resource utilization is below a certain threshold. The monitored warps are increased as
long as SMs observe a threshold level of performance improvement in every iteration.
Similar to CCWS, the authors propose both static and dynamic flavours of PCAL, and
show that static outperforms dynamic, due to the runtime overheads of the latter, as was
observed in CCWS.

5.3.3 Pitfalls in Prior Techniques

In Figure 5.2 we show the above techniques in action for a kernel from the ii benchmark
and analyse the shortcomings of PCAL and CCWS. The simulation methodology is
illustrated later in Section 5.7.3. Firstly, Figure 5.2a explores the {N, p} solution space
by offline profiling of the kernel across the entire region. Here, the x-axis represents
the number of monitored warps (), while the y-axis represents the number of cache-
polluting warps (p, where p < N). The green and red colour of the circles in the graph
represents speedup and slowdown respectively, observed for a warp-tuple indicated by
coordinates (N, p); whereas, the radius of the circle is proportional to the magnitude of

speedup or slowdown. Additionally, Figure 5.2b shows a plot for two specific values

Chapter 5. Managing Thread-level Parallelism 90

of p from the prior {N, p} solution space, i.e., p = N and p = 1, and demonstrates the
performance variation in each.

As shown in Figure 5.2a, CCWS binds p with N, and thereby takes values only
on the diagonal line p = N. Consequently, CCWS technique results in a speedup of
7% at (2,2), which is the peak performance point on the diagonal. In contrast, PCAL
decouples p from N, and searches the two-dimensional space. To implement this search,
PCAL first uses CCWS to arrive at (2,2). Thereafter, it performs a parallel search in
p (converging to p = 1) and an iterative hill climbing in N (converging to N = 2). In
effect, PCAL converges to (2, 1), resulting in a speedup of 35%. However, we note that
the maximum speedup across the entire {N, p} region is 45%, observed at (15, 1).

While the inefficiency of CCWS is due to its restrictive coupling of N and p, the
sub-optimality of PCAL can be explained due to the following reasons. As shown in
Figure 5.2b, the hill climbing in p = 1 (green line), starting from the CCWS point
at N = 2 (on the x-axis), gets trapped at a local optimum at N = 2 due to a nearby
performance valley at N = 4. Consequently, PCAL does not transition to the global
optimum at N = 15. Therefore, when there are multiple performance peaks in the
{N, p} solution space, as is the case in GPUs [53], PCAL becomes prone to a local
optimum point that is nearest to the starting point. Moreover, even in the absence
of performance valleys, if the starting point is far from the performance peaks (as is
the case in the above example), it would require multiple iterations to converge on a
solution. Therefore, adaptive hardware implementations lead to poor results compared

to their static counterparts, as was already observed in dynamic CCWS and PCAL.

5.3.4 Summary

In summary, prior techniques are limited in their ability to efficiently span the {N, p}
solution space and there are two primary reasons for this. Firstly, conventional methods
such as hill climbing are prone to local optimums, and therefore lead to sub-optimal
solutions. Secondly, dynamic implementation of prior techniques present considerable
time and sampling overheads leading to further degradation in the efficiency of these
approaches. Therefore, in this work, we propose an alternative technique to arrive at
a well-performing warp-tuple {N, p}, avoiding the shortcomings of prior techniques

discussed above.

Chapter 5. Managing Thread-level Parallelism 91

Training Kernels

Training Kernels Execution Kernel

Analytical Feature Extractor Poise Performance Counters
. 'Feature Vector | | earned Run time features to warp
= : i O 3| scheduler
=3 Regression Mapping JS &
= S N Inference —> 3 = >
@ | Target Model Predicted | g £ Final

Machine Learning Hardware Inference

Framework POi se Engine

Figure 5.3: System-level architecture of Poise

5.4 Poise: A System Overview

We now present Poise, a different approach for balancing thread-level parallelism and

memory system performance. Figure 5.3 depicts the system-level architecture of Poise.

It is comprised of the following two major components, which are discussed in detail in

subsequent sections.

1. A statistical machine learning framework, where we use a supervised regression

model to perform offline training on a set of profiled kernels in the training set.
During training, we learn a mapping from a set of application and architectural

features to the warp-tuple {N, p} that yields best performance.

A hardware inference engine, where we sample the runtime features, online,
using hardware performance counters, and predict good warp-tuples {N, p} for
previously unseen kernels, using the mapping that was learned during training.
As aresult, this strategy drastically reduces the time and overheads involved in
finding a good initial solution. Thereafter, we perform a focused heuristic search
in the near vicinity of the predicted warp-tuple to find a better warp-tuple, if any,
thereby offsetting statistical prediction errors, which are inherent in any machine

learning algorithm.

5.5 Machine Learning Framework

In this section, we present our machine learning methodology. We begin by extracting

the salient architectural and application features that should be used for training. To

Chapter 5. Managing Thread-level Parallelism 92

identify such features, correlation techniques are often used in machine learning. How-
ever, in computer architecture, we argue for a theoretical exploration of the features to
better reason about the accuracy of the developed machine learning framework. It also
enables portability across different architectures by providing the theoretical tools to
model the variable characteristics. Therefore, we first develop an analytical model to

reveal the feature space, and then use those features for training.

5.5.1 Analytical Model

Fundamentally, GPUs employ the following two types of concurrency to hide the long
latency of memory accesses. Firstly, via instruction concurrency which is attained by
the execution of independent instructions between a memory load and its usage within a
warp. Secondly, via warp concurrency which is attained by the execution of independent
instructions from other warps, i.e., thread-level parallelism. More specifically, when a
warp encounters an instruction that is dependent on a pending load, it is replaced with
another warp that has a stream of independent instructions. Thus, these two mechanisms
help in keeping the functional units busy when there is sufficient independent work
within or across warps [83, 124]. The importance of considering both sources of
concurrency mentioned above, i.e., warp concurrency and instruction concurrency, has
been emphasized in recent work [153].

In an application, if a typical load and its use are not separated by sufficient indepen-
dent instructions from the same warp (low instruction concurrency), then higher TLP is
required in order to hide latencies (high warp concurrency). However, owing to practical
limits on number of warps, each warp would quickly arrive at the dependent instruc-
tion and wait for pending memory loads to complete. Therefore, in such applications,
load miss latencies determine when the dependencies within a warp can be resolved
and appear in the critical path. Such applications are referred to as memory-sensitive
applications, where improving the memory system performance is more useful than
simply increasing the number of warps, as the latter has limited benefit due to a lack of
independent instructions. Therefore, instead of operating at the maximum number of
warps, memory-sensitive applications require a sophisticated balance between TLP and
memory system performance.

In this section, the overarching goal of the analytical model is to mathematically
depict the memory latencies that appear in the critical path for memory-sensitive

applications and lead to stalls. The initial formulation in our analytical model borrows

Chapter 5. Managing Thread-level Parallelism 93

from standardized prior work in this area. Hong and Kim [62] proposed an analytical
framework called MWP-CWP. In their model, they formulate the execution time based
on different architectural and application metrics such as memory-level parallelism and
instruction-level parallelism. Later, Sim et al. [140] proposed GPUPerf that comprised
of an analytical model extending the MWP-CWP model. In their work, they capture
the cache effects using the prior AMAT model [58] and include other optimizations
such as instruction mix and memory-level parallelism. We include the lessons from
the above analytical models with appropriate changes and reasonable simplifications to
tailor it for memory-sensitive applications. Later, using the initial formulation as the
starting point, we analyse how the stall cycles are impacted upon varying the number
of monitored warps and the number of cache-polluting warps. Finally, we extract the
key observable parameters deduced from the analysis and use them to train a regression
model.

Maximum warps: To model the miss latencies in a baseline system with maximum
warps N, let m, be the average L1 miss rate on an SM. Furthermore, let L, be the
average memory latency for an individual L1 miss request. Then, upon executing a load
instruction concurrently across N warps on an SM, the effective memory latency for the
load miss can be expressed by 7., through Equation 5.1. Here, K, 1s the number of
MSHR entries in the L1 cache and accounts for memory-level parallelism. Note that
we assume each warp instruction generates a single, highly coalesced memory request.
Also, the ceil function indicates that the effective latency grows as integer multiples of
L,.

N X
Tinem = Lo X ’7 K mo—‘ S.D)
mshr
Tbusy =N X ho X Id X Tpipe (52)
T1q1 = max {Tmem - Tbusy» 0} (53)

Next, we model the available slack on an SM to hide the effective memory latency.
Let h, (= 1—m,) be the average L1 hit rate for an SM. These L1 hits enable the warps to
make forward progress on dependent instructions (due to resolved data dependencies),
thereby contributing to the busy cycles on the SM. Let I; be the number of additional
instructions in a warp that are now eligible for execution due to a cache hit, until it
encounters the next dependency hazard and stalls the warp again. Then the cycles for
which the functional units on an SM are kept busy can be expressed by 7, through

Equation 5.2. Here, T);,, is the average number of cycles for pipelined execution of a

Chapter 5. Managing Thread-level Parallelism 94

hp
; Ahyse
£lh | || Baseline |
i
Ah
Pl e/
| |

p warps N-p warps

Figure 5.4: L1 hit rate comparison for p and N — p warps

warp instruction on the corresponding functional units. It is noteworthy that the inde-
pendent instructions from a warp (irrespective of a load hit or a miss) contribute to the
parallelism on an SM and keep the functional units busy. However, as mentioned earlier,
memory-sensitive applications have only a few independent instructions, allowing us to
ignore its effect for simplicity. Finally, the number of stall cycles on an SM when the
high latency of memory operations get exposed and appear in the critical path, can be
expressed by Ty, in Equation 5.3.

Reduced warps: We now consider a scenario when only a subset of warps, p (< N),
can pollute the L1 cache, while the remaining (N — p) warps can only reuse the cache
lines allocated by the p cache-polluting warps. In a general case, p warps experience an
improved L1 hit rate of /1, while the remaining (N — p) non-polluting warps experience
a reduced hit rate of h,,. This is shown diagrammatically in Figure 5.4. In such a
case, the effective memory latency for concurrent misses across N warps, for a load
instruction, can be expressed by 7,,,,,, through Equation 5.4, where m, = 1 —h, and
Mpp = 1 — hyp. Note that L' denotes the new average memory latency due to a different
level of congestion in the memory system, emerging from the change in the overall
L1 miss rate. Similarly, the number of cycles when the functional units on the SM are

busy doing useful work, can be expressed by 7/ through Equation 5.5. Therefore, the

busy

number of stall cycles in this case can be expressed by T},

; through Equation 5.6.

N —
Tyiem = L' % [m"” (Kp)+ a pw (5.4)
mshr
/
Tbusy = { p hp + (N_p) hnp } Iy Tpipe (55)
Ts/tall = max {Tnlzem - Tb/usy70} (5.6)

Speedup criteria: For a warp-tuple {N, p} to result in speedup, the resultant stall

Chapter 5. Managing Thread-level Parallelism 95

cycles must be lower than the baseline scheme. Therefore, using the above equations,

the criteria for speedup can be expressed through Equation 5.7.

AT,

T < Tsa = Y —busy - > 1}Criteria for speedup

where,

5.7
ATbusy - Tb/us‘y - Tbusy

ATmem - T/ Tmem

mem

At this point, we define u as the coefficient of goodness of a warp-tuple {N, p} in
reducing the stalls cycles compared to the baseline. A higher u leads to lower stalls,
in turn leading to better performance. Using Equation 5.7, u can be mathematically

defined through Equation 5.8.

o ATbusy
U= -—— = Forspeedup, u>1 (5.8)
ATmem

On further simplification, u can be expressed through Equation 5.9 using Equa-
tions 5.1-5.6. Note that we drop the ceil function in ATX, = for simplicity, without

significant loss in accuracy.

14 np
= ATbusy + AT busy
where, (59)
AT = x (hx = ho) Iy Thipe X € {p, np}
AT = g x (e L —m, L,) [%€ (0N}

To ensure performance improvement for a warp-tuple {N, p}, the criteria for
speedup given by u > 1, can be met conservatively if both conditions in Equation 5.10

are met.

AT?P AT'P

busy busy
Hpp = a1ty =y > 1 (5.10)

p 1 A/’lp/o
= TyineK, 5.11
Hp/np = LpipeBmshr (N—p) (mnp U'—m, L, ()

Chapter 5. Managing Thread-level Parallelism 96

1.6 - 45
= |PC
15 | s S
— IPC trend 35 =
B 14l X Homp 3
N - Uy trend 1 3 N
© 13 e o
e " 125 E
S 1o {2 o
c 1 £
Q 14 1'% 2
O 1y 2
! 1 05
0.9 0

%é% %

é,%} C}& O)L/ Q’é_f_'o‘» LYY % z O)O)
Figure 5.5: Correlation between speedup and u,, /., with p = 1 and N = 24

On simplifying, we can represent u,, /,,,, through Equation 5.11 where Ah,, /,, is (h), —
h,). Due to symmetrical nature of u,,/,, it is expected to yield similar proportionality
as {1, /,p and is therefore omitted for brevity. Therefore, we define p,, /., as the objective
function that we wish to maximize for a bivariate warp-tuple {N, p}.

Correlation with Speedup: In order to measure the correctness of our analytical
model, we measure the correlation between the objective function (u,,/,,) and the
speedup across different memory-sensitive applications. The expectation is that bench-
marks with higher values of y,, /,,,, should demonstrate higher speedups. For the purpose
of this evaluation, we select a warp-tuple with N = 24 and p = 1, and compare the
speedup against a baseline configuration with N = p = 24. In Figure 5.5, we show IPC
normalized to baseline on the y-axis, and benchmarks sorted in the ascending order
of speedup on the x-axis. We also show the value of y,,,, (normalized to syr2k) and
observe an upward trajectory similar to speedup, albeit non-linear. Therefore, in addi-
tion to the actual data points, we also show linear trends in IPC and y, ,,,, by plotting
the respective data points linearly using linear regression [157]. We observe similar
upward trends for both IPC and y,, ,,,. To quantify the correlation, we measure Pearson
correlation coefficient and observe a high value of 0.87 (out of 1.0) between the actual
data points of the objective function and the speedup for benchmarks in Figure 5.5,
indicating a strong positive correlation between the two metrics. In summary, we ob-
serve good correlation between performance speedup and u,, /,,. Therefore, we expect
Equation 5.11 to be a reliable approximation of our objective function.

Limitations of the Analytical Model: In this work, the intent of the analytical

model is not to intricately model the GPU but only to expose the relevant features

Chapter 5. Managing Thread-level Parallelism 97

by modelling steady-state first-order behaviour. This is because we are ultimately
interested in identifying the proportionalities for regression, and not in solving the
objective function for exact solutions — allowing room for reasonable simplifications.
In that spirit, the model presented in this section is a simplistic approximation of
latency hiding in GPUs. For instance, we do not account for dependency latencies due
to pending arithmetic instructions. Such latencies would also need to be hidden by
parallelism to reduce stall time, just like memory latencies. However, we focus only on
the stall cycles contributed by memory latencies as our modifications pertain to memory
system performance (and not arithmetic performance), thereby impacting only memory
latencies (and not arithmetic latencies). Therefore, it is eliminated for brevity, but can
be easily included for completeness.

Similarly, we assume highly coalesced memory access patterns with minimal mem-
ory divergence. In case of high memory divergence, the number of memory requests
would increase the burden on memory bandwidth, thereby reducing memory-level
parallelism due to bandwidth bottlenecks. This would lead to an increase in average
memory access latencies. In our model, we already consider memory access latencies
observed in a congested memory system (L, and L’), and not the minimum memory
access latencies in an uncongested memory system. Therefore, the consequence of
high memory divergence is captured indirectly due to an increase in L, and L’ with
increasing congestion.

Finally, we execute PTX level code due to the limitations of the simulation infrastruc-
ture. A lower level SASS execution would include the effects of compiler optimizations
such as instruction reordering, which may alter the number of independent instructions
in the dependency chains. This is a limitation of our analytical model. However, the
impact of this limitation is expected to be less for memory-sensitive applications where

the independent instructions are few.

5.5.2 Feature Vector Representation

The accuracy of a machine learning model depends highly on the feature vector rep-
resentation. A low dimensional feature vector with truly representative features is
most desirable, as it increases the reliability of the predictions made by the model.
Therefore, we leverage domain knowledge to construct a feature vector, through the
analytical model discussed in Section 5.5.1. As we have observed that our objective

function reliably represents performance, we now extract the salient architectural and

Chapter 5. Managing Thread-level Parallelism 98

Table 5.2: Variables derived from the analytical model

(a) Objective Function Variables

Variable

‘ Description

Thipe Cycles for pipelined execution of a warp instruction
Ksne | No. of MSHR entries per L1 cache

h, Net L1 hit rate for the baseline system (= 1 —m,)

hy, L1 hit rate for p warps for {N, p} tuple (= 1 —m,)

hnp L1 hit rate for N — p warps for {N, p} tuple (= 1 —my,,)
n Net L1 hit rate for {N, p} tuple (= 1 —m’)

Ahy,), | Improvement in hit rate for p warps (= hp — hy)
L, Average memory latency for the baseline system
L Average memory latency for {N, p} tuple
1; Average no. of instructions between two different data hazards

(b) Proportionality derived from the Objective Function

Variable “ Description

R Reuse Distance

No Intra-warp hit rate for the baseline system

Intra-warp hit rate for {N, p} tuple

N —MNo | Intra-warp hits that could not be captured initially in

the baseline with maximum warps due to cache thrashing

Proportional to ' — 1,

ho —M, | Inter-warp hit rate for baseline system

I, Average no. of instructions between two global loads (~ ;)

application characteristics that influence the objective function. To do so, we first make
a few observations about the variables that are present in Equation 5.11 and are listed
in Table 5.2a. We note that the objective function increases with higher &, over the
baseline £, (represented by Ah,,). Conducive conditions for a high /), arise when the
warps can utilize the cache better in the absence of thrashing. Therefore, there must
be enough locality within the warp itself (indicated by intra-warp locality) and the
footprint of warps must fit in the cache in the absence of thrashing (indicated by reuse
distance).

We illustrate the above criteria through an example in Figure 5.6 for a warp-tuple
configuration where p = 1 and N = 24. The hit rate for p warps (%)) is indicated by the
green bar; the hit rate for (N — p) warps (h,,,) is indicated by the red bar; and the hit rate

Chapter 5. Managing Thread-level Parallelism 99

p warps mm— p warps
arps — N -p warps m—
08 [0.8 Baseline
i) Intra-warp L Intra-warp
£ 061 97 % g 061 77 %
T Inter-warp T Inter-warp
- 04 39 o 04 23 %
0 0
(a) ii (R = 236) (b) bfs (R = 1136)
1 1
p warps p warps
N - pwarps N - pwarps
08 Baseline 08 Baseline
i) Intra-warp i) Intra-warp
g o6F 40 % g 061 2%
T Inter-warp T Inter-warp
- 04r 60 % - 04F 98 %
0.2 0.2 -
0 0
() syr2k (R = 240)) cfd (R = 3161)

Figure 5.6: L1 hit rate distribution.

for all warps in baseline system (%,) is indicated by the blue line. In this figure, we also
highlight the different reuse characteristics such as inter-warp hits and intra-warp hits
(as a percentage of total L1 hits in the baseline), and reuse distance (R). We observe that
ii and syr2k show a high Ahy, /.
locality (97% and 40% intra-warp hits respectively) and low reuse distance (R < 240),

This is explained by the presence of high intra-warp

presenting enough opportunity to better utilize the cache in the absence of thrashing.
However, bfs and cfd have high reuse distance (R = 1136 and 3161 respectively),
and therefore, we observe low Ah,,, due to continued thrashing caused by the large
cache footprint of the warp. Note that if all intra-warp hits are captured in baseline
(h,), then there is no future opportunity to capture more intra-warp hits, despite the
favourable reuse characteristics that we have discussed above. Therefore, a good proxy
for the remaining opportunity to capture intra-warp locality is the difference between
intra-warp hits at p = 1 (lowest thrashing) and p = 24 (maximum thrashing). A higher

remaining opportunity will yield a higher Ah We summarize this proportionality

p/o-

between Ak, ,, and reuse characteristics in Table 5.2b.

p/o
Next, we observe in Equation 5.11 that the objective function increases with lower

Chapter 5. Managing Thread-level Parallelism 100

Table 5.3: Feature Vector (X) and Feature Weights (c;)

Features: X Formulation H a (for output N) ‘ B (for output p) ‘
X hy 0.517687 3.786126
X2 W -0.000261 0.483576
X3 Mo 7.209138 -6.386444
X4 n -5.977480 10.320107
X5 M —n,)? -8.906397 -6.533500
X6 LM —n,)? 1.976725 -0.900944
x7 (L'm’ —myLy)?/10 0.004668 0.079856
Xg 1 (constant intercept) 1.667111 -2.189887

degradation in hit rate for (N — p) warps (indicated by the denominator term). Such a
condition arises when the (N — p) warps continue to utilize the cache lines allocated by p
warps, despite losing their own ability to allocate and evict cache lines. Therefore, there
must be enough locality across warps (indicated by inter-warp locality). In Figure 5.6,
we observe that syr2k and ¢ fd have high inter-warp hits (60% and 98% respectively),
and therefore, (N — p) warps show minimal reduction in hit rate. However, ii and
bfs have lower inter-warp hits (3% and 23% respectively), and therefore, observe a
considerable drop in hit rate for (N — p) warps. Notably, the most favourable conditions
for speedup are present for syr2k, i.e., high change in hit rate for p warps and low
change in hit rate for (N — p) warps.

Finally, we note that /; can be difficult to compute due to complex data dependency
chains. Moreover, in memory-sensitive benchmarks, the different dependent instructions
are expected to be in proximity to their preceding load instructions (due to a scarcity of
intermediate independent instructions). Therefore, the number of instructions between
two dependent instructions (/;) can be approximated by the number of instructions
between two global loads, represented as ,, in Table 5.2b.

Summary: The above analysis revealed several factors that influence the objective
function. We summarize the final feature vector X in Table 5.3. The feature weights in
the table will be discussed in detail in Section 5.5.4. Note that the polynomial degree for
each feature is chosen after sensitivity analysis, in line with general practice in machine
learning. Additionally, the variables that depend on the choice of p and N (such as //,
1, L' and my,,) are measured at a fixed reference point in the two-dimensional {N, p}

solution space, i.e., (1, 1); the rest are measured at baseline (24, 24). In summary, the

Chapter 5. Managing Thread-level Parallelism 101

above feature vector X, constructed by sampling at two fixed reference points in the {N,
p} solution space, provides sufficient substrate to learn about the behaviour of N and p

that lead to good performance.

5.5.3 Training Methodology

Scoring Performance Peaks: For supervised learning, we prepare a training dataset
that is comprised of profiled kernels from memory-sensitive benchmarks and is used to
learn a mapping from the input feature vector X (summarized in Table 5.3) to a target
warp-tuple {N, p}. To select this target warp-tuple, an obvious candidate would be
the point in the {N, p} solution space that leads to highest performance. However, a
prediction error could result in a prediction that is a small distance from the target warp-
tuple. Consequently, when the performance peak lies in the vicinity of performance
cliffs, a small prediction error can have a negative impact on performance. In such
cases, training for a target warp-tuple that lies in a good neighbourhood, even with
slightly lower speedup than the global optimum, is expected to yield better results.
Therefore, we propose a scoring system in which each point in the solution space is
assigned a score, which is the weighted sum of performance at the point itself as well
as the performance at neighbourhood points.

In our scoring system, the weight assigned to a neighbourhood point is inversely
proportional to the distance from the point under evaluation. Therefore, to evaluate the
score of a point (a, b) in the solution space, the speedup for that point is assigned a
weight of mg; the speedup for points at a distance of 1 unit in either N or p are assigned
a lower weight of ®; and the speedup for diagonal points at a distance of 1 unit in both
N and p are assigned a further lower weight of m,. Therefore, the score of point (a, b)
can be expressed by Equation 5.12, where S, , represents the speedup at a coordinate
(x, y) in the solution space. Consequently, the target warp-tuple for each kernel is the
point in the solution space that has the highest score, instead of the point that has the
highest performance. Note that the scores are normalized to the number of neighbours,

to account for missing neighbours at the boundary points.

score(a, b) = Z Z O|j|4|j| Satib+j (5.12)
i€{—1,0,1} je{~1,0,1}

In Figure 5.7, we illustrate the utility of the proposed scoring system by analysing

the performance profile of two kernels from the ii benchmark profiled across the {N,

Chapter 5. Managing Thread-level Parallelism 102

20 20
o]
18 speedup o 18 speedup)
() slowdown ° (© slowdown
— 16 00 o0 — 16 o0
8 [] Max Performance 000 3 [] Max Performance o
14 14
g % Max Score oo g 3 Max Score :
g’ 12 G 000000O0 87 12 o
- o o o] o o =1
g 10 0O0000O0O0 o g 10
8_ © 0 0 0 0 8_
o 8 }K o000 0o0oo0o0 o 8
< ©00000O0O0 <
[S] [}
] 6 ©00000O0O0 (v 6 X o
(&) (&)
- o[o] o 000000 - 0000
Q 4 oo 000000000 Q 4 o[@loocoooo0o00
OOO [clclcloNoNoNoNoNcNoNOoNo] © (o} o 000000000
2 Q000000 0O0OOOOOO 2 000000000000 O0OOOO
Q00000 O0OOOOOOOO 0000000Q00OONO
0 OO
10 12 14 16 18 20 0
N (monitored warps) N (monitored warps)
(a) Static profile of ii kernel#34 (b) Static profile of ii kernel#35

Figure 5.7: Scoring performance peaks to avoid cliffs

p} solution space. In Figure 5.7a, the best performance peak is at (6, 5) resulting in a
speedup of 8%. However, at any lower N, performance cliffs start to appear (indicated
by red circles). Therefore, the scoring system gives a lower score to (6, 5) due to nearby
performance cliffs. Instead, the best score is computed at (8, 8) which presents a safer
zone for prediction, even though the target speedup is revised to a lower value of 6%.
Similarly, in Figure 5.7b, the performance peak occurs at (11, 4) with a speedup of 15%.
However, due to performance cliffs at any lower p or higher N, the best score is instead
computed for (7, 6), which presents a slightly lower speedup of 14%, but makes for a
safer prediction point. Therefore, such scoring of the performance peaks reduce the
likelihood of our target being around performance cliffs so that even with prediction
errors, we maintain satisfactory level of performance.

Scaling the Target Warp-tuple: We note that different kernels have different
organization of warps, and thereby vary in the maximum number of warps available to
the scheduler. Therefore, after obtaining the warp-tuple with best score in the {N, p}
solution space, we appropriately scale the target N and p to the maximum number
of warps that are supported per scheduler, i.e.,24. This ensures uniform bounds for
the target warp-tuple in the training data. Later, in the inference stage, we perform

appropriate reverse scaling for the predicted warp-tuple.

5.5.4 Regression Model

For regression analysis, we use Negative Binomial regression from the family of Gener-

alized Linear Models (GLM). The rationale for using Negative Binomial regression is

Chapter 5. Managing Thread-level Parallelism 103

three fold. Firstly, it is used to predict discrete, non-negative target variables, aligning
with our requirement for predicting N and p. Secondly, it allows for overdispersion, i.e.,
the variance can exceed the mean of the predicted outcome. This allows more flexibility
than the alternate Poisson regression, where the mean is always equal to the variance.
Thirdly, it is lightweight due to modest training time and dataset needed to converge to
a solution. In contrast, larger models such as Deep Neural Networks are much more
computationally intensive, require greater training time and dataset to converge, and are

more prone to overfitting [151, 89, 144].
8 8
In(N) =Y ox; In(p)=) Bix; (5.13)
i=1 i=1

Using Negative Binomial regression, we construct a log-linear link function to map
from the feature vector X, to the target N and p. The link functions can be expressed
through Equation 5.13 where x; belongs to the feature vector X; whereas o; and 3;
are the weights for feature x;, learned using the regression for N and p, respectively.
The learned weights for each feature are summarized in Table 5.3. We evaluate the

regression model in Section 5.7.2.

5.6 Hardware Inference Engine

In this section, we present the architecture for Poise’s Hardware Inference Engine
(HIE). It performs the following two primary functions at runtime: online prediction for
the chosen warp-tuple, and course correction in order to offset any statistical error in

predictions.

5.6.1 Prediction Stage

In this stage, HIE dynamically predicts the initial values of N and p that should lead to
good performance. To perform such predictions, it requires the feature weights (o and
B) that were learned offline during training, and the feature vector (X) that needs to be
composed at runtime. At the beginning of kernel execution, the feature weights can be
transferred to HIE by the software or the compiler via constant memory. Subsequently,
predictions are performed at a periodicity of T).rioq Cycles, and this duration is referred
to as an inference epoch. At the beginning of each inference epoch, HIE reconstructs

the feature vector dynamically using hardware performance counters. This is done

Chapter 5. Managing Thread-level Parallelism 104

by collecting the features listed in Table 5.3 at two locations in the {N, p} solution
space, i.e., (24, 24) and (1, 1), as was done during training. A modified warp scheduler,
discussed in Section 5.6.3, steers the system to each of these warp-tuples for feature
reconstruction.

At each of the above two points, HIE performs the following tasks. Firstly, the kernel
is executed for T,,4,mup Cycles to minimize the crossover effects of changing N and p.
Thereafter, performance counters sample the required features for a duration of Trequre
cycles. Finally, after sampling at both (1, 1) and (24, 24), the link functions (described
in Equation 5.13) are used to compute a prediction for N and p. Once the prediction is
made, it is appropriately reverse scaled to counter the prior scaling done during training.
The final predicted warp-tuple is again fed to the warp scheduler, before moving on
to the correction stage. The predictions are reset at the end of each inference epoch
or at the end of the kernel, whichever comes first. As an optimization, if /, is found
to be greater than a cut-off /,,,,,, then HIE prematurely terminates the inference (and
subsequent correction) after sampling at (24, 24). This is to detect compute-intensive
kernels that have very few loads (high 1), and are best run with maximum warps at a

warp-tuple (24, 24), due to their insensitivity to cache performance.

5.6.2 Correction Stage

As with any machine learning algorithm, Negative Binomial regression has an inherent
error distribution in the prediction outcome. At runtime, we have an opportunity to
offset this statistical error and improve the effectiveness of the prediction. Therefore,
in this stage, HIE scans the near vicinity of the predicted warp-tuple by performing a
neighbourhood search through gradient ascent. This is done by sampling for T¢rect
cycles, after warmup, on either side of the current point at a variable stride (or offset).
If the performance at the current location is found to be higher than either neighbours,
the stride length is reduced by half. Therefore, as the confidence in the current location
increases, the search stride reduces. We terminate the search once the stride length
reaches 0. Alternatively, if either neighbour is found to be a higher performance point,
the current location is changed to that of the best performing neighbour, and the search
is repeated with same stride by searching neighbours around the new location.

In summary, HIE starts by correcting N with an initial stride length of €y, while
keeping p same as the initial prediction. This is followed by correcting p with an

initial stride of €,, while keeping N same as the most recently corrected value. After

Chapter 5. Managing Thread-level Parallelism 105

Warp Scheduler Queue L1 Cache
Constant N
Memory e Wmax 0 0
- >
Feature|weights 0 0 =
Wn-1 1 0 Pollute: 0 ; &
Hardware 1 0 > s g
Inference LOAD[b]
: 1 0
Engine >
Wp-1 1 1 Pollute:1 | & §
- Q 8
e I Wi 1 | 1 | roapfal |2
(N, p) tuple £ Wo 1 1 5 g
1 3 :
Warp ID Monitor Pollute
bit bit

Figure 5.8: Poise Warp Scheduler architecture

converging for both N and p, kernel executes at the final corrected warp-tuple for the
remainder of the current inference epoch. It is worth noting that the initial predicted
value from the inference stage is likely to be in the near-neighbourhood of the global
optimum. Therefore, compared to prior techniques, Poise is less likely to get trapped
at a local optimum. In addition, the increased likelihood of being in close proximity
to higher performing points reduces the overall correction time to arrive at the final

solution.

5.6.3 Warp Scheduler

In order to use a warp-tuple {N, p} so as to change the number of monitored and cache-
polluting warps, we modify the existing GTO warp scheduler. The current scheduler
has a queue to track the order in which new warps become active to participate in
multithreading. As shown in Figure 5.8, we add an additional monitor bit to each
entry in the warp scheduler queue, which is set as 1 for N oldest warps. The modified
warp scheduler arbitrates (or monitors) only these N warps in a greedy-then-oldest
fashion, instead of arbitrating all warps as done in baseline. Furthermore, we also add a
pollute bit, which is set as 1 for p oldest warps. As done in PCAL, each load request is
appended with the pollute bit of the corresponding warp before sending the memory
request to the cache hierarchy. On a load miss, the L1 cache-controller uses the pollute
bit in the memory request to determine whether to reserve a cache line for the load
request or not. Loads without polluting privileges can still access the L1 and incur a
cache hit; however, in case of a miss, the corresponding request is forwarded to the L2

without reserving a cache line in the L1.

Chapter 5. Managing Thread-level Parallelism 106

5.6.4 Summary

As shown in Figure 5.8, the software or the compiler provides the trained feature weights
to the HIE via constant memory. During each inference epoch, HIE constructs the
feature vector to make a prediction by sampling the relevant performance counters. This
requires the warp scheduler to alter the number of monitored and cache-polluting warps,
based on the output from HIE at different times. The modified warp scheduler uses the
desired N and p values to set the monitor bits and pollute bits in the warp scheduler
queue. While the monitor bit determines whether a warp participates in scheduling, the
pollute bit determines the privilege of the corresponding load request to reserve cache

lines in L1 cache.

5.7 Evaluation

We now discuss our methodology for evaluating Poise and demonstrate the results.

5.7.1 Workloads

For the purpose of this study, we use memory-sensitive applications from four major
general-purpose benchmark suites, viz., Rodinia [27], MapReduce [57], Polybench [51]
and Graph suite [162]. We consider an application as memory-sensitive if the speedup
with a 64 x larger L1 cache (P,) is greater than 40%. Such benchmarks are listed in
Table 5.4, sorted by normalized Pp,s. The benchmarks are split into completely disjoint
sets for training (3 workloads; 277 kernels) and evaluation (11 workloads; 346 kernels),
as is shown in Table 5.4. It is worth noting that the evaluation workloads were unseen
during training. We run all benchmarks either to completion or until they execute 4

billion instructions, whichever comes first.

5.7.2 Regression Model Evaluation

We perform the regression analysis using Statsmodels [137], a python-based statistical
modelling tool. For the regression, we select only those kernels from the training
set that meet certain threshold criterion. This is to ensure that training is done on
statistically significant data points. For instance, kernels chosen for training must
demonstrate at least a threshold level of performance improvement at their target warp-

tuple. Furthermore, in our experiments, we observe that infrequent predictions are

Chapter 5. Managing Thread-level Parallelism 107

Table 5.4: Training and evaluation workloads

‘ # ‘ Suite Benchmark ‘ Abbrv. ‘ # Kernels ‘ Pres ‘
Training Set
Graph Graph Coloring gco 12 343
2 | MapReduce Page View Rank pvr 248 2.07
Graph Component Label ccl 17 1.49
Evaluation Set

1 | Polybench Symmetric rank-2k operations syr2k 1 14.13

2 | Polybench Symmetric rank-k operations syrk 1 9.03

3 | MapReduce Matrix Multiplication mm 23 6.20

4 | MapReduce Inverted Index ii 118 5.94

5 | Polybench | Scalar and Vector Multiplication | gsmv 2 3.23

6 | Polybench Matrix Vector Product mvt 1 2.97

7 | Polybench BiCGStab Linear Solver bicg 2 2.93

8 | MapReduce Similarity Score s 164 2.85

9 | Polybench Matrix Transpose atax 2 2.73

10 Rodinia Breadth-First Search bfs 24 1.55

11 Rodinia K-Means kmeans 8 1.42

Table 5.5: Poise parameters

Parameter Description Value
o, O, 0 Performance scoring weights 1, 0.50, 0.25
Tyeriod Inference periodicity 200,000 cycles
Tvarmup Warmup duration 2,000 cycles
Treature Sampling duration for feature collection 10,000 cycles
Teorrect Sampling duration for correction 4,000 cycles
Lnax Cut-off for instructions between global loads 49
eN Search stride for N 2
€p Search stride for p 4
Threshold speedup | Speedup for training kernels > 1.5%
Threshold cycles Execution cycles for training kernels at baseline | > 10,000 cycles
Threshold hit rate | L1 hit rate for training kernelsat N =1, p =1 >0%

sufficient to capture most of the performance improvement. Therefore, to prevent
frequent predictions during kernel execution, the inference period is intended to be

larger in comparison to the time needed to construct a prediction. As a result, we

Chapter 5. Managing Thread-level Parallelism 108

collect features only for 24,000 cycles (2,000 cycles for warmup and 10,000 cycles
for sampling at each of the two points in the solution space). It amounts to only 12%
of the entire prediction period (200,000 cycles). Therefore, a good initial prediction
accuracy would allow us to find a good performing warp-tuple expeditiously within
12% of the execution time in every inference epoch, followed by the correction phase to
further improve performance. The various timing and threshold parameters for Poise
are derived after detailed sensitivity analysis, and are summarized in Table 5.5.

For a preliminary evaluation of the model, we measure the offline prediction accu-
racy of the model against unseen profiled kernels from the evaluation set. We observe a
mean prediction error of 16% and 26% for N and p, respectively. At runtime, Poise’s
HIE allows for correcting these prediction errors. Note that due to higher statistical
error in p compared with N, the search stride to correct prediction errors in p is chosen

to be higher than the search stride for N, i.e., €, is 4 and €y is 2.

5.7.3 Experimental Methodology

We model a modern GPU on a cycle-accurate simulator, GPGPU-Sim (v3.2.2) [10],
based on the architectural parameters listed previously in Table 5.1. For energy and
area simulations, we use GPUWattch [98], a McPAT-based power model integrated in
GPGPU-Sim. We compare Poise with different techniques that are summarized below:

GTO: It represents the baseline greedy-then-oldest warp scheduler, with maximum
allowable warps enabled per SM.

SWL: It represents the Static Warp Limiting policy [132] from the CCWS scheduler,
which is discussed in Section 5.3.1. In SWL, the optimal number of warps per scheduler
are determined through static profiling of benchmarks, which does not incur any runtime
overheads. Therefore, our comparison with the CCWS scheduler is conservative in
favour of CCWS.

PCAL-SWL: It represents the Priority-based Cache Allocation policy [100] dis-
cussed in Section 5.3.2. To determine the initial starting point, SWL (static scheme) is
chosen instead of CCWS (dynamic scheme) to eliminate the initial runtime overheads.
Therefore, our comparison with the PCAL scheduler is conservative in favour of PCAL.

Static-Best: It represents the configuration when each kernel in an application is
run at the best performing warp-tuple. It is determined by offline profiling of all kernels
in the {N, p} solution space. Therefore, it represents the statically optimal performance

of a benchmark derived at kernel granularity.

Chapter 5. Managing Thread-level Parallelism 109

GTO mmmm SWL m=m PCAL-SWL === Poise Static-Best ===
47 2.47 3.0 2.943.36
. 22
o
[O] 2
[
c
> 1.8 F
17}
]
Q 1.6 7
L
8 14
N
g 1.2
g
= 1
2 |
a
08 s, S 2 z %) & 4 % A
74 fe? : > X
Y, Yy 2 %, 2 % o % s %%,
2% %

Figure 5.9: Performance normalized to GTO

5.7.4 Performance

In Figure 5.9, we demonstrate the performance of Poise normalized to the baseline GTO
scheduler for evaluation set workloads. We show that Poise achieves a harmonic mean
speedup of 46.6% (and up to 2.94 x for mm). In contrast, we observe a speedup of 31.5%
with PCAL-SWL and 21.8% with SWL. Therefore, on average, Poise outperforms
PCAL-SWL by 15.1% (up to 141.1% for mm), and SWL by 24.8% (up to 49.4% for
syrk). Overall, Poise performs better than PCAL because of the following reasons.
Firstly, Poise is able to predict a good initial warp-tuple expeditiously, using the learned
model. Secondly, the near-neighbour search in Poise around the predicted warp-tuple is
less likely to be trapped at a local optimum as it is expected to be closer to the global
optimum, unlike PCAL. We also observe that Static-Best achieves a harmonic mean
speedup of 52.8%, surpassing Poise only by 6.2%. This performance gap between
Poise and Static-Best can be attributed to the prediction errors in the regression model,
and the slight correction overhead to offset such errors at runtime. Notably, for some
benchmarks, such as atax, gsmv, mvt and syrk, Poise even surpasses the performance
of Static-Best. We observe that these applications have monolithic kernels instead of
several smaller kernels (as shown in Table 5.4); as a result, Poise is able of capture
the slight dynamic phase changes within the large monolithic kernels by performing
predictions at regular intervals. However, these phases go undetected in Static-Best,
where profiling is done at coarse kernel granularity.

Finally, we note that for a few scenarios such as syr2k and bicg, SWL or PCAL-
SWL perform better than Poise. This happens when the global optimum lies within
(or close to) the narrow reach of the SWL, i.e., the N = p region in the solution space.
As both of these schemes use a static SWL profiler, they get a head start by finding (or

getting close to) the global optimum without incurring any runtime overheads.

Chapter 5. Managing Thread-level Parallelism 110

\ GTO mmmm SWL === PCAL-SWL === Poise mmmmm Static-Best ==
93.43

90
80
70
60 -
50
40
30
20
10

L1 Hit Rate (%)

8 8 7z 4) 4
ﬁ@f Yy 2, 7 0&% 2, %, X %, %
Figure 5.10: Overall L1 hit rate
\ GTO mmmm SWL === PCAL-SWL === Poise mmmmm Static-Best ===
— 2
O —
=
G 18
()
£
T 16
:
° 1.4
°
g 12 m
s
€ 1
o
£
= 08 I
=
< o6
’ b 8 2 7 e 2, 4 & % o 4, .
J/@% E % «Y‘% 2Ly © < A & %e %
2% %

Figure 5.11: Average Memory Latency (AML) normalized to GTO

5.7.5 L1 Cache Hit Rate

In Figure 5.10, we compare the absolute L1 hit rate for different techniques. We observe
that Poise achieves an average L1 hit rate of 40.1%, in contrast to 27.1% with PCAL-
SWL, 37.7% with SWL, and 20.6% with baseline GTO. Therefore, in caching efficiency,
Poise outperforms PCAL-SWL by 13%, SWL by 2.4%, and GTO by 19.5%. Notably,
SWL comes close to Poise in L1 hit rate, however, at the cost of significant reduction in
system performance. Lastly, Poise comes close to the L1 hit rate of 43.6% achieved

with Static-Best, indicating the effectiveness of Poise in mitigating cache thrashing.

5.7.6 Average Memory Latency

To evaluate the performance of the shared memory system, we measure the average
memory latencies (AML) incurred by L1 misses. In Figure 5.11, we observe that Poise
increases the AML by only 1.1% over the baseline GTO scheduler. In contrast, PCAL-
SWL increases the AML by 32.4%. This is because of the lower L1 hit rate in PCAL-
SWL compared to Poise, which increases the memory traffic and aggravates congestion,

thereby leading to high memory latencies. On the other hand, SWL decreases the AML

Chapter 5. Managing Thread-level Parallelism 111

A [Poise+16KB mmmmm Poise+32KB === Poise+64KB mm=m

3 AN

% 292 9> 9 O

b -

° 2

2

k3] 18

(9]

2 s

8 .

i) 14

?

N t2r

s

e 1

<]

= 08 . ; N s S A A
S S v & ; S5 L7 %

g Y w7 o o % % CE

Figure 5.12: Sensitivity to L1 cache size

by 10.7% but significantly underestimates the number of monitored warps, indicated by
the low speedup. Interestingly, AML with Static-Best increases by 14.1%, indicating
that with optimal warp-tuples, SMs can tolerate a higher AML compared to the baseline.

In summary, we observe that Poise provides a good balance between TLP (indicated
by speedup) and cache performance (indicated by L1 hit rate), without under-utilizing

or over-utilizing shared memory resources (indicated by AML).

5.7.7 Sensitivity Study

L1 Cache Size: The training for Poise was performed on a GPU with 16 KB L1
cache, alongside a hash set-indexing function for L1. We now alter the architectural
parameters of the evaluation platform, while using the previously trained regression
model. For evaluation, we employ a linear set-indexing function for L1 and vary the L1
cache size. In Figure 5.12, we observe that with a 16 KB L1 cache, Poise maintains a
considerable harmonic mean speedup of 48%. Even on increasing the L1 cache size
significantly by up to 4x (64 KB), we observe a harmonic mean speedup of 36.7%.
Therefore, Poise continues to deliver performance improvements even with considerably
larger caches. This also highlights the severity of the cache thrashing problem in GPUs.
In summary, we observe that Poise remains effective even with changes to critical
architectural features, such as L1 cache capacity and indexing, despite being trained on
a different baseline.

Search Stride: In Figure 5.13, we vary the stride lengths for N and p, represented
by (e, €p), which are used to perform a neighbourhood search in the correction phase.
We note that without any corrections for the predicted values of N and p, i.e., stride of (0,

0), Poise achieves a harmonic mean speedup of 23% (up to 3.12x). Therefore, relying

Chapter 5. Managing Thread-level Parallelism 112

IPC (normalized to baseline GTO)

S S 7 4) 4, %
Yo Y o T % % % % % %y

Figure 5.13: Sensitivity to search stride (ey, €,)

[X(all) m— —x7 . —X6 . —x5 B3 —x4 == —x3 — |

IPC (normalized to Poise)

Ry
5

S M 7 % % % % % %

3)
&
2o %

Figure 5.14: Sensitivity to removing a feature x; from X

purely on predictions, with no correction mechanism, Poise still achieves a higher
speedup than SWL, while remaining only 8.5% short of PCAL-SWL performance, on
average. On increasing the search stride to (1, 1) and (2, 2), we observe the harmonic
mean speedup of 43.6% and 45.7% respectively, which settles at 45% for a search stride
of (4, 4). Therefore, we note that for most benchmarks, such as syr2k and ii, increasing
the stride length results in improvement at first, but it saturates or wears off with longer
strides. However, a stride of (2, 4) gives the best speedup of 46.6% on average. This is
due to the lower prediction error in N compared to p (as seen in Section 5.7.2), thereby
requiring higher correction only in the latter.

Training Features: We now examine the effect of removing a feature, x;, from the
feature vector X, and retraining the regression model. The resulting execution speedup
with such a model is shown in Figure 5.14, normalized to the case when all features are
used for training. In each of these cases, no correction is done to the initial predictions,
so as to measure the change in actual prediction accuracy. Also, we omit x; and x;

as they are represented in x;7 and show a similar trend. We observe that on removing

Chapter 5. Managing Thread-level Parallelism 113

]

22| () speedup 2o 22|+ Predicted Tuple
20 slowdown oooo
(©) So0e 20| M Corrected Tuple
18 }{MAX 000000 18
00000006
16 ©0000000 16
000000000
14 0000000000 14

00000000000
000000000000
000000000000
10 000000000000 00
0000000000000 00
8 [ofoNoRoRoNoRoNo NN N N-FoNoN- o) 8
[oYoYoRoNoRoNoNoNCoNNoNN N NN N -]
6 OOOOOOOOO000000000 6
[oYoYoYoYoYoXoYoN-No¥-N-N-N NN -X-]
4 Q0OOOOEEO0OO000000000 4
2 2
0 0

p (cache-polluting warps)
p (cache-polluting warps)

000000000 OOOOO000EEO00
0000000000000 00000000

g&oo@oooooooooooooeeeee |

0°2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24
N (monitored warps) N (monitored warps)
(a) Static profile of bf's (b) Poise execution of b fs

24 24

22| (© speedup 2 22| <+ Predicted Tuple
__ 20| Oslowdown e __ 20| M Corrected Tuple
g B KMAX e 3 18
-3 I it L R R /SN S
S - S FE S U (R I SR R 2 16
F= 278 2
JE T 3
O | Feeseseecesan o
L Q
A @
< <
O 8 o o0 000000000000 O
@]
o (&}
= 6 e o0 eeeeseesesssees -
o “eoo00600000000000000 (o

4 S0 000000000000000000

s00000000000000000000
2| BEEEON0000000000000000
. GKEOOOOO000000000000000
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24
N (monitored warps) N (monitored warps)
(c) Static profile of ii (d) Poise execution of ii

Figure 5.15: Comparing static and Poise executions

a feature, the harmonic mean slowdown, compared to the case when all features are
used for training, varies from 1.5% for x7 to 21.7% for x¢. We also note that highly
memory-sensitive applications are most adversely impacted by the removal of a feature,
emphasizing the importance of the proposed features. In summary, best performance is

shown when all features are used for training.

5.7.8 Case Study

We now present a case study for two representative benchmarks, bfs and ii, from
the evaluation set of benchmarks. Through this study, we qualitatively illustrate the
accuracy of Poise in predicting good performing warp-tuples on previously unseen

benchmarks. In Figure 5.15a, we show the static performance profile for bfs. It

Chapter 5. Managing Thread-level Parallelism 114

indicates a general trend suggesting that the speedup improves with lower values of N
and p (green circles), with the best performing warp-tuple at (5, 5). It also indicates
that there is an aversion to higher values of N and moderate-to-high values of p (red
circles). Next, in Figure 5.15b we show the different warp-tuples chosen by Poise at
runtime during the multiple prediction and correction phases throughout the execution.
The predicted warp-tuples are indicated by ‘+’ sign, whereas the warp-tuples generated
after correction are indicated through the shaded coordinates. Therefore, we observe
that most predictions are in the high performance zone, i.e., in close proximity of the
best performing warp-tuple at (5, 5). Furthermore, Poise successfully steers the system
away from the low performance zones (red circles in Figure 5.15a), thereby correctly
detecting the general affinities in a previously unseen benchmark.

Similarly, in Figure 5.15¢, we observe that the ii benchmark shows an affinity for
low values of p and low-to-moderate values of N (indicated by the larger radius of the
green circles). The best performing warp-tuple in the static profile is found at (3, 1).
In Figure 5.15d, we observe that multiple predictions made by Poise at runtime lead
to low values of p and low-to-moderate values of N, steering the system to the good
performing regions in the solution space. For the prediction errors (indicated by some
predictions for higher values of p), Poise performs the necessary corrections at runtime,

which are traced through the shaded areas in Figure 5.15d.

5.7.9 Hardware Overheads

Poise requires four 32-bit performance counters per SM to collect runtime features such
as intra-warp hits, total L1 hits, AML and the number of compute instructions per load
instruction. These performance counters provide sufficient substrate to construct the
entire feature vector described in Table 5.3. Poise also requires arithmetic resources to
compute the link function. However, the existing arithmetic units on the SM can be used
for this purpose as they are often idle in memory-sensitive applications due to high stall
cycles, thereby obviating the need for any extra hardware. Finally, Poise requires one
finite-state machine (FSM) per SM to manage the transition from prediction stage to
correction stage in HIE, and to perform this periodically. In our design, we observe that
the FSM requires 7 states for the hardware inference engine, thereby requiring two 3-bit
state registers per SM for maintaining the states, in addition to minor combinational
logic which can be borrowed from the idle execution units. In total, Poise poses a

minimal storage overhead of 536 bytes, i.e., less than 0.01% of chip area, estimated

Chapter 5. Managing Thread-level Parallelism 115

using the existing parameters in McPAT. The minor energy consumption of the above
registers is within McPAT's margin of error, and therefore, not reported. In summary,
Poise is extremely lightweight in terms of hardware overhead. In contrast, dynamic
PCAL and CCWS implementations require CCWS-like hardware, including victim tag

arrays, presenting greater hardware overheads [132, 100].

5.7.10 Discussion

We now briefly discuss few issues pertaining to the applicability of Poise.

Portability: In this work, we evaluate Poise on a modern GPU. For similar multi-
threaded architectures, the feature vector is expected to remain the same, and require
only the feature weights to change. Therefore, Poise can be adapted to similar multi-
threaded architectures by retraining the regression model and generating new feature
weights. As these feature weights are provided to the hardware through the software or
the compiler, it entails no changes in the hardware.

Need for Poise: With recent support for multi-kernel execution on GPUs, different
kernels executing on different SMs can present varied requirement for thread-level
parallelism. In such scenarios, the adaptive nature of Poise allows it to tailor the
scheduling decisions for each SM. This is also useful in multi-chip GPUs [9] or server
GPUs [63] where applications with significantly diverse parallelism and memory system

needs might be collocated on the same GPU.

5.8 Related Work

In this section, we discuss prior work related to the ideas discussed in this chapter.

5.8.1 Cache Management and Warp Scheduling

In addition to the state-of-the-art warp scheduling techniques discussed in Section 5.3,
several cache management schemes have been proposed to improve caching efficiency'.
Li et al. [99] used reuse frequency and reuse distance to bypass the L1 for low locality
accesses, using decoupled L1 data and tag arrays. Xie et al. [161] proposed locality-

driven cache bypassing at the granularity of thread blocks. In contrast to bypassing

The cache management, cache bypassing and warp scheduling techniques discussed here have also
been discussed in the related work for prior chapters, but succinctly included here for completeness in
the current context.

Chapter 5. Managing Thread-level Parallelism 116

schemes, we not only improve cache performance, but also alter the levels of multi-
threading. Furthermore, Chen et al. [28] proposed a coordinated cache bypassing and
warp throttling scheme. However, similar to PCAL, they iteratively alter the number
of warps by hill climbing to optimize NoC latencies. Therefore, it suffers from the
same limitations as PCAL that were discussed in Section 5.3.3. On similar lines, Khairy
et al. [78] proposed a coarse-grained cache bypassing scheme where the entire L1
or L2 cache is bypassed for all accesses if the cache miss rate exceeds a predefined
threshold. They also proposed a dynamic warp throttling scheme using core sampling,
where different SMs employ different number of warps during the sampling period and
vote for the best level of throttling at the end of the sampling. However, it is a single
dimensional warp throttling scheme and suffers from the same limitations as SWL.
More recently, Lee and Wu [94] proposed an instruction-based scheme to track low
reuse memory instructions and bypass requests from such instructions. Similarly, Koo
et al. [86] proposed an instruction-based scheme to not only bypass, but also to protect
cache lines using instruction locality characteristics. In contrast, Poise is a warp-level
scheme, and therefore, can be applied orthogonally to instruction-level schemes, given
the large magnitude of the problem in GPU caches.

Previously, Rogers et al. [133] proposed divergence-aware warp scheduling to
capture intra-warp locality in loops. Jia et al. [69] presented a taxonomy for memory
access locality and proposed a compile-time algorithm to selectively utilize the L1
caches. Narasiman et al. [113] proposed large warp architecture to dynamically create
warps to mitigate penalty due to control flow divergence. Jog et al. [72] proposed a
two-level warp scheduling technique to prevent the warps from reaching a long latency
memory operations at the same time. Xie et al. [161] proposed a framework to extract
locality information about the loads, and consequently make cache bypassing decisions
to restrict the number of thread blocks that can access the cache. Kim ef al. [82]
proposed to utilize the long latency stalls by pre-executing instructions that are not in
the dependency chain of the stalled instructions. Oh et al. [119] maximize the utilization
of cache lines by prioritizing warps based on their load instruction characteristics. Tarjan
et al. [150] proposed a scheme to tolerate memory miss latencies for SIMD cores by
masking out threads in a warp that are waiting on data and allowing other threads to

continue execution, hence utilizing the idle execution slots.

Chapter 5. Managing Thread-level Parallelism 117

5.8.2 Machine Learning in Systems

In the realm of compilers, machine learning based techniques have been extremely
useful in the areas of autotuning and compiler optimizations. Stephenson et al. [145]
used genetic algorithms to find effective compiler optimizations by searching in the
solution space of priority functions (or cost functions). They perform training by
populating the model with different expressions of the priority function. Expressions
that lead to the best performing code are considered fit and selected for crossovers,
thereby populating the next generation of expressions. This methodology helps in
generating good application-specific and general-purpose heuristics. Agakov et al. [3]
proposed a methodology to speedup compiler optimizations for embedded platforms.
They use machine learning to focus the search on those areas of the optimization space
that are most profitable with respect to performance. This is done by correlating new
programs with previously observed programs and using prior information to focus the
optimization search. In the above work, authors employ Principal Component Selection
[17] to select a set of static code features and use independent distribution and Markov
models to perform learning. In a subsequent work, Cavazos et al. [21] proposed the use
of hardware performance counters to capture dynamic features, instead of static features,
to determine good compiler optimizations. They select all hardware performance
counters available in the architecture. However, a limitation of the above work is the
inability to discover new features that do not natively exist as performance counters,
but if included, might be suitable in improving the model. On similar lines, Park ef
al. [123] proposed a machine learning model to learn good polyhedral optimizations
using dynamic behaviour of a program observed via hardware performance counters,
thereby avoiding an extensive heuristic search. Fursin et al. [46] proposed MILEPOST
GCC, a self-optimizing compiler based on machine learning to optimize programs for
evolving hardware, such as configurable embedded processors. In our work, we address
an architectural optimization problem. In contrast to the compiler optimization space,
the architectural optimization space discussed in our work is much smaller. However,
as we perform dynamic optimizations in hardware using runtime features, conventional
iterative search techniques still pose a significant runtime penalty, as was shown in
Section 5.3.3. Therefore, despite the difference in shape and size of the optimization
space, speeding up architectural optimizations proves to be useful in our scenario as well.
Furthermore, to alleviate the black box nature of the machine learning framework, we

select application and architectural features by harnessing domain knowledge through

Chapter 5. Managing Thread-level Parallelism 118

an analytical model, instead of using automated feature selectors.

Application of machine learning in computer architecture has been picking up in the
recent years. Jiménez and Lin [71] proposed a dynamic branch predictor based on the
perceptron — the simplest neural network. In their scheme, they replace the existing
two-bit saturating counter with a perceptron predictor. The predictor is trained by
learning the correlation between the outcome of prior branches in the global history and
the outcome of the current branch. Predictions are made by retrieving the appropriate
perceptron weights through the branch address and using the runtime global history
register as the input to the perceptron. Ipek et al. [65] applied reinforcement learning to
adaptively change DRAM scheduling decisions, instead of employing rigid scheduling
policies. The adaptive memory controller aims to perform optimal actions, under a given
system state, that maximizes the long-term reward of those actions. Liao et al. [103] used
machine learning to optimize memory prefetch decisions in datacenters by detecting the
varying application needs through hardware performance counters. Machine learning
has also been employed to predict performance and power trends to avoid running
full cycle-accurate simulations. Ipek ef al. [64] built a design space model to predict
the performance impact of architectural changes, saving considerable simulation time.
Lee and Brooks [92] proposed a methodology to discover efficient configurations of
reconfigurable microarchitectures over a large adaptive space of microarchitectural
parameters. In their methodology, they employ a collection of techniques such as
sparse sampling (to minimally navigate the design space), regression-based predictive
modelling (to learn about the performance impact of design changes without extensive
simulations), and genetic algorithm (for combinatorial optimization of designs). Wu
et al. [158] used clustering algorithms and machine learning in GPGPUs to estimate
power and performance trends, using previously observed scaling behaviours. Bitirgen
et al. [18] used machine learning to predict coordinated resource allocation decisions

for shared resources in a CMP in order to optimize system-level performance.

5.9 Conclusion

In the computer architecture community, the use of machine learning to solve architec-
tural problems has been oddly limited, compared to other fields. Few reasons for this
limited use is the bulky nature of sophisticated models such as Deep Neural Networks,
that generate prohibitively large feature weight matrices with high storage needs, and

present high computational demands for training and inference. These factors make

Chapter 5. Managing Thread-level Parallelism 119

them difficult to use and adopt in architectures, where on-chip resources are often
severely limited. Moreover, a black box nature of these techniques, due to a lack of
mathematical models to justify their performance, often makes it difficult for architects
to argue about their effectiveness across different architectures and applications.

In this chapter, we propose Poise, a combination of machine learning and hardware
techniques, to balance thread-level parallelism and memory system performance in
GPUgs. In the machine learning framework, we present a supervised learning model that
is trained offline on a large set of profiled kernels. It learns a mapping from a set of
application and architectural features, to good warp scheduling decisions that led to best
performance. This learned mapping is provided to the hardware through the software
or the compiler in form of feature weights. At runtime, a hardware inference engine
on the SM composes the feature vector, and uses the learned mapping to dynamically
predict good warp scheduling decisions. To offset any statistical errors in prediction,
the inference engine performs a neighbourhood search in the vicinity of the prediction.
We evaluate Poise on disjoint set of benchmarks that were unseen during training, and
observe a performance improvement of up to 2.94x and a harmonic mean speedup
of 46.6% over the baseline GTO warp scheduler. Poise also outperforms the prior
state-of-the-art warp scheduler by up to 141.1%, and an average of 15.1%.

In summary, we demonstrate a mechanism to achieve considerable accuracy and
sophistication with a lightweight regression model. To arrive at a small, yet effective
model, we apply domain knowledge through analytical reasoning, thereby considerably
shrinking the feature vector to truly representative features. Therefore, our proposed
technique drastically reduces the computational and storage needs of the learned model,
making it suitable for architectural use. To further reduce the cost of adoption, we
provide a software interface to change the feature weights, retaining the flexibility to
retrain the model for newer applications. Through the above considerations, Poise
demonstrates an effective way of applying machine learning to drive architectural

decisions.

Chapter 6
Conclusion

In this thesis, we investigate the challenges arising due to the bandwidth bottlenecks
present across the memory hierarchy in GPUs, with a particular focus on the cache
hierarchy. We isolate three major factors that lead to the bandwidth bottlenecks: dis-
proportionate bandwidth resources across the memory hierarchy; inefficient cache
management policies; and high levels of thread-level parallelism. We show that the
above factors lead to severe congestion across the memory hierarchy, leading to a
breach in the latency tolerance property of the GPUs. This is because the high memory
latencies arising due to congestion can no longer be hidden by multithreading and start
to appear in the critical path of system performance.

To address and mitigate the bandwidth bottlenecks, we propose a three-pronged
approach: cost-effective scaling of the existing bandwidth resources guided by an
extensive characterization of the bandwidth bottlenecks; supplementing the existing
bandwidth resources through an L1 cooperative caching network which exploits the
presence of inter-core reuse in GPUs; and better utilizing the existing bandwidth
resources by regulating the levels of multithreading and reducing cache thrashing. In
Section 6.1, we further elaborate on the contributions made in this thesis, followed by a
critical analysis of our proposals in Section 6.2. In Section 6.3, we conclude the chapter

with a discussion on future research directions.

6.1 Contributions

In this section, we summarize and discuss the contributions made in the preceding

chapters of this thesis.

120

Chapter 6. Conclusion 121

6.1.1 Scaling the Bandwidth Resources

In Chapter 3, we show that bandwidth in the cache hierarchy is increasingly burdened
due to the SMs injecting large volumes of memory requests on one side, and the high
bandwidth off-chip memory injecting large volumes of memory responses on the other
side. We further observe that the existing cache hierarchy is under-provisioned with
respect to bandwidth resources to handle such high levels of memory traffic, resulting in
significant levels of congestion. Therefore, we characterize the presence the bandwidth
bottlenecks across the memory hierarchy in GPUs, including the cache hierarchy. This
marks a departure from the traditional treatment of the bandwidth bottleneck where it is
known to reside primarily in the off-chip memory. We quantify the stalls throughout
the memory hierarchy and identify the architectural parameters that play a critical role
in leading to a congested memory system. From the design space revealed by the
characterization, we propose cost-effective configurations of the memory hierarchy
to alleviate the bandwidth bottlenecks. We show that the performance improvement
achieved by addressing the bandwidth bottleneck in the cache hierarchy often exceeds
the speedup obtained by a memory system with a baseline cache hierarchy and HBM
DRAM. We also show that scaling the bandwidth resources in isolation at specific
levels of the memory hierarchy can be sub-optimal and can even be counter-productive.
Therefore, we emphasize the need to resolve the bandwidth bottlenecks synergistically

across different levels of the memory hierarchy.

6.1.2 Supplementing the Bandwidth Resources

In Chapter 4, we identify significant inter-core reuse in GPUs for general-purpose
applications. The existing cache management policy aggravates the bandwidth bot-
tleneck by sending duplicate memory requests for shared data that is already cached
elsewhere at the same level in the memory hierarchy. Therefore, we use this opportunity
to reuse data among L1 caches and reduce the bandwidth demand on the shared L2
cache. Furthermore, we show that there is a considerable leeway of around 80 cycles to
fetch the shared data from a remote L1 cache, obviating the need for an aggressive or
latency-sensitive scheme to share data. Therefore, we propose a Cooperative Caching
Network (CCN) where we connect the L1 caches with a lightweight ring network to
facilitate inter-core communication of shared data. The ring topology is lowest in
terms of logical complexity and power consumption as all core-to-core connections are

near-neighbour, and therefore, the wires are short. In addition, CCN scales linearly with

Chapter 6. Conclusion 122

the increasing number of nodes, in contrast to the existing crossbar between L1 and
L2 which scales polynomially. Therefore, the proposed cooperative caching network
provides a cost-effective way to supplement the existing bandwidth between the L1 and

L2 cache levels by exploiting the reuse characteristics of general-purpose applications.

6.1.3 Utilizing the Bandwidth Resources

In Chapter 5, we note that high levels of multithreading are normally desired in up-
coming application domains. However, in memory-intensive applications, it causes
severe contention for cache resources leading to cache thrashing, thereby aggravating
the bandwidth bottleneck due to high cache miss rates. Therefore, we address the
challenge of maintaining satisfactory levels of memory system performance without
significantly sacrificing thread-level parallelism, in contrast to pure throttling schemes
which severely limits parallelism. To this end, we propose a combination of machine
learning and architecture techniques to dynamically determine the best warp scheduling
decisions. Through these decisions, the warp scheduler alters the degree of thread-level
parallelism in the system, and independently alters the number of warps appropriate
to maintain satisfactory level of cache performance. The proposed mechanism, Poise,
has two major components: a machine learning framework and a hardware inference
engine. In the machine learning framework, we first use an analytical model to reveal the
architecture and application features that influence the best warp scheduling decisions.
Subsequently, we use a supervised learning model — trained offline on a set of profiled
kernels — to learn a mapping from the set of extracted features to the best warp schedul-
ing decisions. At runtime, the hardware inference engine collects the architecture and
application features that were used during training, and uses the learned mapping to
predict good warp scheduling decisions on previously unseen workloads. Therefore,
Poise dynamically regulates the degree of thread-level parallelism in the GPU, and also
independently improves the L1 caching efficiency by mitigating contention for cache
resources. As a result, it reduces the high levels of memory requests sent to the lower

levels of the memory hierarchy, thereby mitigating congestion.

6.2 Critical Analysis

In this section, we perform a critical analysis of the proposals presented in the prior

chapters.

Chapter 6. Conclusion 123

6.2.1 Ease of Adoption

The proposed mechanisms pose different thresholds for adoption in the future GPU
architectures. Some of the metrics that determine such a threshold are hardware
overheads, scalability and verification effort. We briefly evaluate our proposed schemes
using the above metrics and argue about the comparative ease of adoption in the future
architectures. The analysis is summarized in Table 6.1.

Hardware Overheads: Among the proposed mechanisms, cost-effective scaling
and Cooperative Caching Network pose an area overhead of 1.5% and 1.3% respectively.
On the other hand, Poise poses a minimal area overhead of less than 0.1%, as it only
includes performance counters and finite-state machines. However, it is noteworthy
that Poise does require one-off offline training of the regression model on a set of
representative workloads, and minor software or compiler changes to communicate the
learned feature weights to the hardware inference engine.

Scalability: The proposed cost-effective scaling uses an asymmetric crossbar,
among other changes, which limits scalability due to the polynomial increase in cost
incurred by the crossbar with increasing number of SMs. In contrast, the ring net-
work proposed in Cooperative Caching Network scales linearly with respect to area
and energy, and therefore it is a lucrative architectural choice for supplementing the
bandwidth resources in the memory hierarchy. In CCN, however, the latency overhead
of traversing the rings increases significantly with larger rings. Therefore, hierarchical
implementation of the proposed ring networks can be used, thereby decomposing the
serial latency of traversing the high number of nodes into concurrent transactions to
multiple hierarchical rings. Finally, Poise scales linearly with respect to area and en-
ergy with increasing number of SMs. Moreover, due to independent warp schedulers
on each SM, Poise does not pose any additional latency constraint in larger systems
(unlike CCN), and therefore scales best among the proposed solutions. However, as
the underlying architecture changes, Poise might require re-training of the regression
model to account for a possible shift in the balance between thread-level parallelism
and memory system performance arising out of architectural scaling.

Verification Effort: The proposed cost-effective scaling poses the least verification
cost. This is because we restrict our design space exploration to existing architectural
parameters rather than introducing new architectural components. As the existing con-
figuration of the memory hierarchy is already verified, it would require minimal effort

to verify the scaled configurations of the memory hierarchy. On the other hand, the

Chapter 6. Conclusion 124

Table 6.1: Relative overhead of adoption for the proposed schemes indicated by H

(highest), M (moderate) and L (lowest).

‘ Metric H Cost-effective scaling ‘ Cooperative Caching Network Poise
Hardware Overhead H M L
Scaling Overhead H M L
Verification Effort L H M

Cooperative Caching Network poses a significant verification cost due to an additional
interconnection network. Some of the new scenarios to be verified are network dead-
locks, protocol correctness, and timing correctness for the ring network and shadow
tag arrays. Finally, Poise poses an intermediate and nominal verification effort as the

majority of the hardware changes are restricted to the hardware warp scheduler.

6.2.2 Portability

In this thesis, we restrict our evaluation to NVIDIA GPUs as they are the most prevalent
discrete GPUs, arguably holding the highest market share in the said domain. Conse-
quently, we also restrict ourselves to CUDA programming model that is proprietary to
NVIDIA platforms. However, we expect that the bandwidth bottlenecks are a pervasive
problem present across different GPU architectures. This is indicated by the apparent
success of high bandwidth memories such as GDDRS and HBMs across architectures
from different vendors. In fact, the recent introduction of High Bandwidth Cache
Controller in AMD’s Vega Architecture [7] indicates that the bandwidth bottleneck
across the cache hierarchy is also attracting attention, and is not an isolated problem
limited to NVIDIA GPUs. In summary, this thesis proves to be an effective primer to
evaluate and mitigate the bottlenecks, subject to modification of the proposals based on

the constraints of the underlying architecture.

6.2.3 Evaluation Methodology

In this thesis, we use a widely adopted cycle-accurate simulation based evaluation
methodology — a general practice in architecture research. This is because of the expo-
nential cost and time required to evaluate the architectural modifications in real chips,
rendering it impractical. In addition, lack of standardized and open-source Register

Transfer Level (RTL) IP modules for GPUs presents another limitation. Therefore, we

Chapter 6. Conclusion 125

restrict ourselves to simulation infrastructures, trading off accuracy and cost for speed
and ease of evaluation. However, it is noteworthy that we do bolster our proposals with
sufficient intuitive reasoning and analytical modelling to ensure good reproducibility of
results on real GPU chips.

Additionally, we simulate GPU architectures similar to Fermi (used in Chapter 3 and
Chapter 4) and Kepler (used in Chapter 5) architectures. The more recent architectures,
such as Maxwell and Pascal, are not currently supported due to the limitation of the
existing simulation infrastructure available for academic research in the domain of
GPUs. However, as the basic organization of the memory hierarchy is fairly consistent
across different architectures, we expect our observations to be applicable to newer

generations of GPUs as well.

6.2.4 Other Inefficiencies in the Memory Hierarchy

In this thesis, we address a few inefficiencies in the memory hierarchy pertaining
to inadequate bandwidth resources in the cache hierarchy, poor cache management
policies and high levels of multithreading. While we show that these inefficiencies
are extremely critical, they are by no means an exhaustive list of factors that lead to
bandwidth bottlenecks. There are several other limiting factors that can be addressed to
improve the memory system performance. Some of these techniques include the usage
of data compression [126, 88, 97] and changing the memory access granularity [130, 8]
to reduce the bandwidth demand, DRAM scheduling mechanisms to improve off-chip
bandwidth utilization [169, 87, 25, 26] and cooperative management of the shared
bandwidth resources [37, 73].

6.3 Future Work

In this thesis, we focus on managing the GPU memory hierarchy with respect to
bandwidth bottlenecks and aim to mitigate the congestion. As the number of SMs
continue to grow and workloads continue to diversify, traditional organization of the
memory hierarchy might become increasingly outdated. While we address some of
the inefficiencies in the existing memory hierarchy, rethinking other assumptions and
design decisions from traditional multiprocessors that may be suboptimal for GPUs is
crucial and a potential research direction. One such possible area of research is in the

domain of interconnection networks. With increasing number of nodes and considerably

Chapter 6. Conclusion 126

higher request rates, traditional crossbar networks become highly saturated and lead
to significantly higher queuing latencies, in addition to the polynomial growth in area
and power. While recent research has shown promising results with low cost ring-like
architectures in CPUs and GPUs [120, 95, 81, 172], it still remains an open problem
for future research.

Another possible area of research is to explore the joint design space of multiple
techniques that address different inefficiencies in GPUs. As future applications are
expected to present an even higher demand on shared resources across the memory
hierarchy, a collective redressal of the problem from multiple fronts is essential. For
instance, in this thesis we explore efficient ways to scale, supplement and utilize the
existing bandwidth resources in GPUs. Collectively, they form a large design space
which can be tailored to synergistically address the bandwidth bottlenecks. Therefore, it
is an important area of research to investigate the best ways to combine such techniques
and harness the benefits of different proposals in a cost-effective manner.

In Chapter 4, we address the bandwidth implication of repeated accesses to the L2
cache for data shared across different cores. Such a policy not only leads to duplicate
accesses to the L2 cache, but also leads to significant replication of data across private
L1 caches. Storing duplicate data across different L1 caches reduces the effective
on-chip storage provided by the already scarce L1 caches. A future research direction,
therefore, is to explore sophisticated schemes that build upon the Cooperative Caching
Network to reduce the redundancy in the on-chip storage. Such a scheme can improve
the utilization of on-chip storage by selectively duplicating remote L.1 data in a local L1
cache only when it exhibits high intra-core reuse, and prohibiting replication of remote
L1 data if it is expected to show low intra-core reuse.

In Chapter 5, we focus on mitigating cache thrashing in the L1 cache, as it is one of
the most scarce on-chip memory resource in GPUs. However, with growing workload
sizes, lower levels of the memory — such as the shared L2 cache — will begin to
suffer from cache thrashing as well, appearing as a potential bottleneck. Therefore,
cache management policies that consider L1 and L2 caches collectively as a critical
resource, is a potential area of research. For instance, with L2 cache becoming a critical
resource, future machine learning based techniques can focus on optimally distributing
the working set across both L1 and L2 caches, in contrast to focusing only on L1.
Therefore, finding the optimal composition of warps with respect to their abilities to
pollute the different levels of the memory hierarchy is an interesting research direction.

GPUs are increasingly used in datacenters and cloud computing, where different

Chapter 6. Conclusion 127

SMs on a GPU may be executing different kernels from separate applications. In such a
scenario, different SMs may pose varying need for shared resources. For instance, the
shared memory resources — such as the on-chip and off-chip memory bandwidth —
would appear more performance critical to SMs with few or no active warps, in contrast
to SMs with sufficient active warps. Therefore, when such disparate SMs are present
during the same epoch of execution, the criticality of the available memory bandwidth
varies for different SMs. In the existing policy, however, a pending memory request
tries to acquire a fraction of the shared memory bandwidth as soon as it is conceived,
while being oblivious to the relative criticality of the shared bandwidth across other
SMs. This is because each SM employs a greedy policy to acquire the shared bandwidth
in order to maximize its own bandwidth utilization, thereby excessively depleting
the shared bandwidth and causing congestion. It is analogous to the Tragedy of the
Commons, a problem in economics where a strategy best for an individual in using an
unregulated common resource may not yield the most optimal outcome for the group. In
the recent years, microeconomics concepts such as Game Theory have found increasing
application to solve similar problems in systems research [170, 106, 107, 171]. In
GPUs, the problem of managing the shared system resources such as bandwidth and
cache capacity falls under the same ambit of shared resource management. Therefore, a
promising future direction is to further explore the use of microeconomic concepts to

solve the above problems in GPUs.

6.4 Concluding Remarks

In this thesis, we draw attention to some of the inefficiencies in GPUs that lead to
poor memory system performance. In the future, with increasing use of GPUs across
diverse application domains and continual growth in workload complexity, the burden
on the memory system is expected to rise even further. We hope that our work helps in
understanding and addressing some of these problems, and motivates further research

in this direction.

Bibliography

[1] M. Abdel-Majeed and M. Annavaram. Warped Register File: A Power Efficient
Register File for GPGPUs. In Proceedings of the 2013 IEEE 19th International
Symposium on High Performance Computer Architecture, HPCA ’13, pages 412-423,
Washington, DC, USA, 2013. IEEE Computer Society.

[2] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato. Owner Prediction for
Accelerating Cache-to-cache Transfer Misses in a cc-NUMA Architecture. In
Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, SC °02, pages
1-12, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[3] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, J. Thom-
son, M. Toussaint, and C. K. I. Williams. Using Machine Learning to Focus Iterative
Optimization. In Proceedings of the International Symposium on Code Generation
and Optimization, CGO ’06, pages 295-305, Washington, DC, USA, 2006. IEEE

Computer Society.

[4] J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan, J. Ketema, D. Poetzl,
T. Sorensen, and J. Wickerson. GPU Concurrency: Weak Behaviours and Program-
ming Assumptions. In Proceedings of the Twentieth International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS
"15, pages 577-591, New York, NY, USA, 2015. ACM.

[5] J. Alsop, M. D. Sinclair, R. Komuravelli, and S. V. Adve. GSI: A GPU Stall
Inspector to Characterize the Source of Memory Stalls for Tightly Coupled GPUs.

In IEEE International Symposium on Performance Analysis of Systems and Software,
ISPASS 2016.

[6] J. Alsop, M. S. Orr, B. M. Beckmann, and D. A. Wood. Lazy Release Consis-
tency for GPUs. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1-14, Oct 2016.

128

Bibliography 129

[71 AMD Radeon: Vega Architecture. https://radeon.com/en-us/vega-
architecture/, 2017.

[8] A. Arunkumar, S. Y. Lee, and C. J. Wu. ID-cache: Instruction and Memory
Divergence Based Cache Management for GPUs. In 2016 IEEE International
Symposium on Workload Characterization (IISWC), pages 1-10, Sept 2016.

[9] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa, A. Jaleel,
C.-J. Wu, and D. Nellans. MCM-GPU: Multi-Chip-Module GPUs for Continued
Performance Scalability. In Proceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA *17, pages 320-332, New York, NY, USA, 2017.
ACM.

[10] A.Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. Analyzing
CUDA Workloads Using a Detailed GPU Simulator. In ISPASS, pages 163—-174.
IEEE, 20009.

[11] A.Bakhoda, J. Kim, and T. M. Aamodt. Throughput-Effective On-Chip Networks
for Manycore Accelerators. In Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO °43, pages 421-432, Wash-
ington, DC, USA, 2010. IEEE Computer Society.

[12] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano,
S. Smith, R. Stets, and B. Verghese. Piranha: A Scalable Architecture Based on
Single-chip Multiprocessing. In Computer Architecture, 2000. Proceedings of the
27th International Symposium on, pages 282—293, June 2000.

[13] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev,
and P. Sadayappan. A Compiler Framework for Optimization of Affine Loop Nests
for GPGPUs. In Proceedings of the 22nd Annual International Conference on
Supercomputing, ICS ’08, pages 225-234, New York, NY, USA, 2008. ACM.

[14] M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-CUDA
Code Generation for Affine Programs. In Proceedings of the 19th Joint European
Conference on Theory and Practice of Software, International Conference on Com-
piler Construction, CC’10/ETAPS’ 10, pages 244-263, Berlin, Heidelberg, 2010.
Springer-Verlag.

https://radeon.com/en-us/vega-architecture/
https://radeon.com/en-us/vega-architecture/

Bibliography 130

[15] B. M. Beckmann and D. A. Wood. Managing Wire Delay in Large Chip-
Multiprocessor Caches. In Proceedings of the 37th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 37, pages 319-330, Washington, DC,
USA, 2004. IEEE Computer Society.

[16] M. Bennasar, Y. Hicks, and R. Setchi. Feature Selection Using Joint Mutual
Information Maximisation. Expert Syst. Appl., 42(22):8520-8532, December 2015.

[17] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
Inc., New York, NY, USA, 1995.

[18] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated Management of Multiple
Interacting Resources in Chip Multiprocessors: A Machine Learning Approach. In
Proceedings of the 41st Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 41, pages 318-329, Washington, DC, USA, 2008. IEEE Computer
Society.

[19] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. I. Jordan, and D. A. Patterson. Statisti-
cal Machine Learning Makes Automatic Control Practical for Internet Datacenters.

In Workshop on Hot Topics in Cloud Computing (HotCloud 09), 2009.

[20] S. Campanoni, K. Brownell, S. Kanev, T. M. Jones, G.-Y. Wei, and D. Brooks.
HELIX-RC: An Architecture-compiler Co-design for Automatic Parallelization of
Irregular Programs. In Proceeding of the 41st Annual International Symposium on
Computer Architecuture, ISCA ’14, pages 217-228, Piscataway, NJ, USA, 2014.
IEEE Press.

[21] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. E. P. O’Boyle, and O. Temam.
Rapidly Selecting Good Compiler Optimizations Using Performance Counters. In
Proceedings of the International Symposium on Code Generation and Optimization,
CGO ’07, pages 185-197, Washington, DC, USA, 2007. IEEE Computer Society.

[22] G. Chandrashekar and F. Sahin. A Survey on Feature Selection Methods. Comput.
Electr. Eng., 40(1):16-28, January 2014.

[23] J. Chang and G. S. Sohi. Cooperative Caching for Chip Multiprocessors. In
Proceedings of the 33rd Annual International Symposium on Computer Architecture,

ISCA ’06, pages 264-276, Washington, DC, USA, 2006. IEEE Computer Society.

Bibliography 131

[24] J. Chang and G. S. Sohi. Cooperative Cache Partitioning for Chip Multiprocessors.
In Proceedings of the 21st Annual International Conference on Supercomputing, ICS
"07, pages 242-252, New York, NY, USA, 2007. ACM.

[25] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and R. Balasubramonian.
Managing DRAM Latency Divergence in Irregular GPGPU Applications. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 14, pages 128—139, Piscataway, NJ, USA, 2014. IEEE

Press.

[26] N. Chatterjee, M. O’Connor, D. Lee, D. R. Johnson, S. W. Keckler, M. Rhu,
and W. J. Dally. Architecting an Energy-Efficient DRAM System for GPUs. In

2017 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 73-84, Feb 2017.

[27] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron.
Rodinia: A Benchmark Suite for Heterogeneous Computing. In Proceedings of the
2009 IEEE International Symposium on Workload Characterization, ISWC °09,
pages 44-54, Washington, DC, USA, 2009. IEEE Computer Society.

[28] X. Chen, L. W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W. M. Hwu. Adaptive
Cache Management for Energy-Efficient GPU Computing. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 343-355, Dec
2014.

[29] R. L. Cheng. Video Game Console. US Design Patent 2713118, Dec 1983.

[30] H. Choi, J. Ahn, and W. Sung. Reducing Off-chip Memory Traffic by Selective
Cache Management Scheme in GPGPUs. In Proceedings of the 5th Annual Workshop
on General Purpose Processing with Graphics Processing Units, GPGPU-5, pages
110-119, New York, NY, USA, 2012. ACM.

[31] G. Chrysos. Intel Xeon Phi Coprocessor - The Architecture. Technical report,
Intel Corporation, 2012.

[32] CUDA C Programming Guide. http://docs.nvidia.com/cuda/cuda-c-
programming-guide/, 2016.

[33] J. W. Davidson and S. Jinturkar. Memory Access Coalescing: A Technique for
Eliminating Redundant Memory Accesses. In Proceedings of the ACM SIGPLAN

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

Bibliography 132

1994 Conference on Programming Language Design and Implementation, PLDI *94,
pages 186—195, New York, NY, USA, 1994. ACM.

[34] S. Dublish, V. Nagarajan, and N. Topham. Characterizing Memory Bottlenecks in
GPGPU Workloads. In Proceedings of the 2016 IEEE International Symposium on
Workload Characterization, ISWC 16, Providence, Rhode Island, USA, 2016.

[35] S. Dublish, V. Nagarajan, and N. Topham. Cooperative Caching for GPUs. ACM
Trans. Archit. Code Optim., 13(4), December 2016.

[36] S. Dublish, V. Nagarajan, and N. Topham. Evaluating and Mitigating Bandwidth
Bottlenecks Across the Memory Hierarchy in GPUs. In 2017 IEEE International

Symposium on Performance Analysis of Systems and Software, ISPASS, Santa Rosa,
CA, USA, April 2017.

[37] S. Dublish. Student Research Poster: Slack-Aware Shared Bandwidth Manage-
ment in GPUs. In Proceedings of the 2016 International Conference on Parallel
Architectures and Compilation, PACT *16, pages 451-452, New York, NY, USA,
2016. ACM.

[38] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V. Veidenbaum.
Improving Cache Management Policies Using Dynamic Reuse Distances. In Proceed-
ings of the 2012 45th Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO-45, pages 389—400, Washington, DC, USA, 2012. IEEE Computer
Society.

[39] A.ElTantawy, J. W. Ma, M. O’Connor, and T. M. Aamodt. A Scalable Multi-path
Microarchitecture for Efficient GPU Control Flow. In 2014 I[EEE 20th International
Symposium on High Performance Computer Architecture (HPCA), pages 248-259,
Feb 2014.

[40] CUDA by example - Errata, June 2014, 2014.

[41] W. C. Feng and S. Xiao. To GPU Synchronize or Not GPU Synchronize? In
Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pages
3801-3804, May 2010.

[42] GeForce 256: The World’s First GPU. http://www.nvidia.co.uk/page/
geforce256.html, 1999.

http://www.nvidia.co.uk/page/geforce256.html
http://www.nvidia.co.uk/page/geforce256.html

Bibliography 133

[43] J. Fox. Applied Regression Analysis and Generalized Linear Models. SAGE
Publications, 2008.

[44] J. Friedman, T. Hastie, and R. Tibshirani. Regularization Paths for Generalized
Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1):1-22,
2010.

[45] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic Warp Formation
and Scheduling for Efficient GPU Control Flow. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 40, pages 407—
420, Washington, DC, USA, 2007. IEEE Computer Society.

[46] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks, B. Mendel-
son, E. Bonilla, J. Thomson, H. Leather, C. Williams, M. O’Boyle, P. Barnard,
E. Ashton, E. Courtois, and F. Bodin. MILEPOST GCC: Machine Learning based
Research Compiler. In GCC Summit, Ottawa, Canada, June 2008.

[47] J. Gaur, M. Chaudhuri, and S. Subramoney. Bypass and Insertion Algorithms
for Exclusive Last-level Caches. In Proceedings of the 38th Annual International
Symposium on Computer Architecture, ISCA 11, pages 81-92, New York, NY, USA,
2011. ACM.

[48] Intel 82720: Graphics Display Controller. Datasheet, 1983.

[49] P. Glaskowsky. NVIDIA’s Fermi: The First Complete GPU Computing Architec-
ture. Technical report, NVIDIA, 2009.

[50] C. Gou and G. N. Gaydadjiev. Elastic Pipeline: Addressing GPU On-chip Shared
Memory Bank Conflicts. In Proceedings of the 8th ACM International Conference
on Computing Frontiers, CF "11, pages 3:1-3:11, New York, NY, USA, 2011. ACM.

[51] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos. Auto-
tuning a High-level Language Targeted to GPU Codes. In Innovative Parallel
Computing, pages 1-10, May 2012.

[52] N. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan. ANATOMY: An
Analytical Model of Memory System Performance. In The 2014 ACM International
Conference on Measurement and Modeling of Computer Systems, SIGMETRICS
"14, pages 505-517, New York, NY, USA, 2014. ACM.

Bibliography 134

[53] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C. Weiser.
Many-Core vs. Many-Thread Machines: Stay Away From the Valley. Computer
Architecture Letters, 8(1):25-28, 2009.

[54] M. A. Hall. Correlation-based Feature Selection for Machine Learning. PhD
thesis, The University of Waikato, 1999.

[55] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. G. Hallnor, H. Jiang,
M. Dixon, M. Derr, M. Hunsaker, R. Kumar, R. B. Osborne, R. Rajwar, R. Singhal,
R. D’Sa, R. Chappell, S. Kaushik, S. Chennupaty, S. Jourdan, S. Gunther, T. Piazza,
and T. Burton. Haswell: The Fourth-Generation Intel Core Processor. /IEEE Micro,
34(2):6-20, 2014.

[56] HYNIX HBM. https://www.skhynix.com/, 2017.

[57] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: A MapReduce
Framework on Graphics Processors. In Proceedings of the 17th International Con-

ference on Parallel Architectures and Compilation Techniques, PACT ’08, pages
260-269, New York, NY, USA, 2008. ACM.

[58] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fifth Edition: A

Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 5th edition, 2011.

[59] E. Herrero, J. Gonzalez, and R. Canal. Distributed Cooperative Caching. In
Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques, PACT *08, pages 134—143, New York, NY, USA, 2008.
ACM.

[60] J. Hestness, S. W. Keckler, and D. A. Wood. A Comparative Analysis of Mi-
croarchitecture Effects on CPU and GPU Memory System Behavior. In 2014 IEEE

International Symposium on Workload Characterization (IISWC), pages 150-160,
Oct 2014.

[61] M. A. Holliday and M. Stumm. Performance Evaluation of Hierarchical Ring-
Based Shared Memory Multiprocessors. IEEE Trans. Computers, 43(1):52—-67,
1994.

[62] S. Hong and H. Kim. An Analytical Model for a GPU Architecture with Memory-

level and Thread-level Parallelism Awareness. In Proceedings of the 36th Annual

https://www.skhynix.com/

Bibliography 135

International Symposium on Computer Architecture, ISCA 09, pages 152-163, New
York, NY, USA, 2009. ACM.

[63] GPUs for Cloud Servers. https://www.ibm.com/cloud/gpu, 2017.

[64] E. 1pek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz. Efficiently
Exploring Architectural Design Spaces via Predictive Modeling. In Proceedings
of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XII, pages 195-206, New York, NY,
USA, 2006. ACM.

[65] E. ipek, O. Mutlu, J. F. Martinez, and R. Caruana. Self-Optimizing Memory
Controllers: A Reinforcement Learning Approach. In Proceedings of the 35th

Annual International Symposium on Computer Architecture, ISCA 08, pages 39-50,
Washington, DC, USA, 2008. IEEE Computer Society.

[66] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and J. Emer.
Adaptive Insertion Policies for Managing Shared Caches. In Proceedings of the 17th
International Conference on Parallel Architectures and Compilation Techniques,

PACT 08, pages 208-219, New York, NY, USA, 2008. ACM.

[67] A.Jaleel, H. H. Najaf-abadi, S. Subramaniam, S. C. Steely, and J. Emer. CRUISE:
Cache Replacement and Utility-aware Scheduling. In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVII, pages 249-260, New York, NY, USA, 2012.
ACM.

[68] V. Jatala, J. Anantpur, and A. Karkare. Scratchpad Sharing in GPUs. ACM Trans.
Archit. Code Optim., 14(2):15:1-15:29, May 2017.

[69] W.Jia, K. A. Shaw, and M. Martonosi. Characterizing and Improving the Use of
Demand-fetched Caches in GPUs. In Proceedings of the 26th ACM International
Conference on Supercomputing, ICS *12, pages 15-24, New York, NY, USA, 2012.
ACM.

[70] W.Jia, K. A. Shaw, and M. Martonosi. MRPB: Memory Request Prioritization
for Massively Parallel Processors. In 2014 IEEE 20th International Symposium on
High Performance Computer Architecture (HPCA), pages 272-283, Feb 2014.

https://www.ibm.com/cloud/gpu

Bibliography 136

[71] D. A. Jiménez and C. Lin. Dynamic Branch Prediction with Perceptrons. In
Proceedings of the 7th International Symposium on High-Performance Computer
Architecture, HPCA °01, pages 197—, Washington, DC, USA, 2001. IEEE Computer
Society.

[72] A.Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T. Kandemir,
O. Mutlu, R. Iyer, and C. R. Das. OWL: Cooperative Thread Array Aware Scheduling
Techniques for Improving GPGPU Performance. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS 13, pages 395406, New York, NY, USA, 2013. ACM.

[73] A.Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R.
Das. Exploiting Core Criticality for Enhanced GPU Performance. In Proceedings
of the 2016 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Science, Antibes Juan-Les-Pins, France, June 14-18, 2016,
pages 351-363, 2016.

[74] S. Kaxiras and G. Keramidas. SARC Coherence: Scaling Directory Cache Coher-
ence in Performance and Power. IEEE Micro, 30(5):54—65, September 2010.

[75] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das. Neither More Nor Less:
Optimizing Thread-level Parallelism for GPGPUs. In Proceedings of the 22nd
International Conference on Parallel Architectures and Compilation Techniques,
pages 157-166, Sept 2013.

[76] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco. GPUs and
the Future of Parallel Computing. IEEE Micro, 31(5):7-17, September 2011.

[77] M. M. Keshtegar, H. Falahati, and S. Hessabi. Cluster-based Approach for Im-
proving Graphics Processing Unit Performance by Inter Streaming Multiprocessors

Locality. IET Computers & Digital Techniques, March 2015.

[78] M. Khairy, M. Zahran, and A. G. Wassal. Efficient Utilization of GPGPU Cache
Hierarchy. In Proceedings of the 8th Workshop on General Purpose Processing
Using GPUs, GPGPU-8, pages 36—47, New York, NY, USA, 2015. ACM.

[79] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A Scalable and
High-performance Scheduling Algorithm for Multiple Memory Controllers. In /IEEE

Bibliography 137

16th International Symposium on High-Performance Computer Architecture (HPCA),
pages 1-12, Jan 2010.

[80] H. Kim, J. Kim, W. Seo, Y. Cho, and S. Ryu. Providing Cost-effective On-chip
Network Bandwidth in GPGPUs. In 2012 IEEE 30th International Conference on
Computer Design (ICCD), pages 407-412, Sept 2012.

[81] H. Kim, G. Kim, S. Maeng, H. Yeo, and J. Kim. Transportation-network-inspired
Network-on-Chip. In 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA), pages 332-343, Feb 2014.

[82] K. Kim, S. Lee, M. K. Yoon, G. Koo, W. W. Ro, and M. Annavaram. Warped-
preexecution: A GPU Pre-execution Approach for Improving Latency Hiding. In

2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 163—175, March 2016.

[83] D. B. Kirk and W.-m. W. Hwu. Programming Massively Parallel Processors: A
Hands-on Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1st edition, 2010.

[84] J. Kloosterman, J. Beaumont, M. Wollman, A. Sethia, R. Dreslinski, T. Mudge, and
S. Mahlke. WarpPool: Sharing Requests with Inter-warp Coalescing for Throughput
Processors. In 2015 48th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 433—444, Dec 2015.

[85] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way Multithreaded
Sparc Processor. IEEE Micro, 25(2):21-29, March 2005.

[86] G. Koo, Y. Oh, W. W. Ro, and M. Annavaram. Access Pattern-Aware Cache
Management for Improving Data Utilization in GPU. In Proceedings of the 44th

Annual International Symposium on Computer Architecture, ISCA 17, pages 307—
319, New York, NY, USA, 2017. ACM.

[87] N.B. Lakshminarayana, J. Lee, H. Kim, and J. Shin. DRAM Scheduling Policy for
GPGPU Architectures Based on a Potential Function. IEEE Computer Architecture
Letters, 11(2):33-36, 2012.

[88] S.Lal, J. Lucas, and B. Juurlink. E°MC: Entropy Encoding Based Memory Com-
pression for GPUs. In 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 1119-1128, May 2017.

Bibliography 138

[89] S. Lawrence, C. L. Giles, and A. C. Tsoi. Lessons in Neural Network Training:
Overfitting May be Harder than Expected. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial
Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode
Island., pages 540-545, 1997.

[90] G. Lebanon. Riemannian Geometry and Statistical Machine Learning. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA, 2005. AAI3159986.

[91] A.R. Lebeck and D. A. Wood. Dynamic Self-invalidation: Reducing Coherence
Overhead in Shared-memory Multiprocessors. In Proceedings of the 22Nd Annual

International Symposium on Computer Architecture, ISCA ’95, pages 48-59, New
York, NY, USA, 1995. ACM.

[92] B. C. Lee and D. Brooks. Efficiency Trends and Limits from Comprehensive
Microarchitectural Adaptivity. In Proceedings of the 13th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XIII, pages 3647, New York, NY, USA, 2008. ACM.

[93] J. Lee and H. Kim. TAP: A TLP-aware Cache Management Policy for a CPU-GPU
Heterogeneous Architecture. In Proceedings of the 2012 IEEE 18th International
Symposium on High-Performance Computer Architecture, HPCA *12, pages 1-12,
Washington, DC, USA, 2012. IEEE Computer Society.

[94] S. Y. Lee and C. J. Wu. Ctrl-C: Instruction-Aware Control Loop Based Adap-
tive Cache Bypassing for GPUs. In 2016 IEEE 34th International Conference on
Computer Design (ICCD), pages 133-140, Oct 2016.

[95] J. Lee, S. Li, H. Kim, and S. Yalamanchili. Design Space Exploration of On-
chip Ring Interconnection for a CPU-GPU Heterogeneous Architecture. J. Parallel
Distrib. Comput., 73(12):1525-1538, December 2013.

[96] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu. Improving GPGPU
Resource Utilization Through Alternative Thread Block Scheduling. In 2014 IEEE

20th International Symposium on High Performance Computer Architecture (HPCA),
pages 260-271, Feb 2014.

[97] D. Lee, M. O’Connor, and N. Chatterjee. Reducing Data Transfer Energy by
Exploiting Similarity within a Data Transaction. In 2018 IEEE 24th International
Symposium on High Performance Computer Architecture (HPCA), Feb 2018.

Bibliography 139

[98] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodet,
and V. J. Reddi. GPUWattch: Enabling Energy Optimizations in GPGPUs. In
Proceedings of the 40th Annual International Symposium on Computer Architecture,
ISCA ’13, pages 487—498, New York, NY, USA, 2013. ACM.

[99] C.Li, S. L. Song, H. Dai, A. Sidelnik, S. K. S. Hari, and H. Zhou. Locality-Driven
Dynamic GPU Cache Bypassing. In Proceedings of the 29th ACM on International
Conference on Supercomputing, ICS 15, pages 67-77, New York, NY, USA, 2015.
ACM.

[100] D. Li, M. Rhu, D. R. Johnson, M. O’Connor, M. Erez, D. Burger, D. S. Fussell,
and S. W. Redder. Priority-based Cache Allocation in Throughput Processors. In 2015
IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA), pages 89-100, Feb 2015.

[101] L. Li, A. B. Hayes, S. L. Song, and E. Z. Zhang. Tag-Split Cache for Efficient
GPGPU Cache Utilization. In Proceedings of the 2016 International Conference on
Supercomputing, ICS 16, pages 43:1-43:12, New York, NY, USA, 2016. ACM.

[102] A. Li, S. L. Song, W. Liu, X. Liu, A. Kumar, and H. Corporaal. Locality-
Aware CTA Clustering for Modern GPUs. In Proceedings of the Twenty-Second

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS *17, pages 297-311, New York, NY, USA, 2017. ACM.

[103] S.-w. Liao, T.-H. Hung, D. Nguyen, C. Chou, C. Tu, and H. Zhou. Machine
Learning-based Prefetch Optimization for Data Center Applications. In Proceed-

ings of the Conference on High Performance Computing Networking, Storage and
Analysis, SC °09, pages 56:1-56:10, New York, NY, USA, 2009. ACM.

[104] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A
Unified Graphics and Computing Architecture. IEEE Micro, 28(2):39-55, March
2008.

[105] Y. Liu, E. Z. Zhang, and X. Shen. A Cross-input Adaptive Framework for
GPU Program Optimizations. In 2009 IEEE International Symposium on Parallel
Distributed Processing, pages 1-10, May 2009.

[106] Q. Llull, S. Fan, S. M. Zahedi, and B. C. Lee. Cooper: Task Colocation with
Cooperative Games. In 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 421432, Feb 2017.

Bibliography 140

[107] Q. Llull. Microeconomic Models for Managing Shared Datacenters. PhD thesis,
Duke University, 2017.

[108] Luke Durant, Olivier Giroux, Mark Harris and Nick Stam. Inside Volta: The
Worlds Most Advanced Data Center GPU. https://devblogs.nvidia.com/
inside-volta/, 2017.

[109] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why On-chip Cache Coherence is
Here to Stay. Commun. ACM, 55(7):78-89, July 2012.

[110] A. K. Mishra, O. Mutlu, and C. R. Das. A Heterogeneous Multiple Network-
on-chip Design: An Application-aware Approach. In 2013 50th ACM/EDAC/IEEE
Design Automation Conference (DAC), pages 1-10, May 2013.

[111] S. Mittal. A Survey of Techniques for Architecting and Managing GPU Register
File. IEEE Transactions on Parallel and Distributed Systems, 28(1):16-28, Jan 2017.

[112] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enhancing
Both Performance and Fairness of Shared DRAM Systems. In Proceedings of the
35th Annual International Symposium on Computer Architecture, ISCA *08, pages
63—74, Washington, DC, USA, 2008. IEEE Computer Society.

[113] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and
Y. N. Patt. Improving GPU Performance via Large Warps and Two-level Warp
Scheduling. In Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-44, pages 308-317, New York, NY, USA, 2011.
ACM.

[114] R. Nasre, M. Burtscher, and K. Pingali. Atomic-free Irregular Computations on
GPUs. In Proceedings of the 6th Workshop on General Purpose Processor Using
Graphics Processing Units, GPGPU-6, pages 96—107, New York, NY, USA, 2013.
ACM.

[115] NVIDIA’s Next Generation CUDA Compute Architecture: Fermi. Technical
report, NVIDIA, 2009.

[116] NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110. Tech-
nical report, NVIDIA, 2012.

https://devblogs.nvidia.com/inside-volta/
https://devblogs.nvidia.com/inside-volta/

Bibliography 141

[117] C. M. O’Brien. Negative Binomial Regression, Second Edition by Joseph M.
Hilbe. International Statistical Review, 79(3):483-484, 2011.

[118] CUDA Occupancy Calculator. https://developer.download.nvidia.com/

compute/.../CUDA_Occupancy_calculator.xls.

[119] Y. Oh, K. Kim, M. K. Yoon, J. H. Park, Y. Park, W. W. Ro, and M. Annavaram.
APRES: Improving Cache Efficiency by Exploiting Load Characteristics on GPUs.
In 43rd ACM/IEEE Annual International Symposium on Computer Architecture,
ISCA 2016, Seoul, South Korea, June 18-22, 2016, pages 191-203, 2016.

[120] H. Oi and N. Ranganathan. A Comparative Study of Bidirectional Ring and
Crossbar Interconnection Networks. In in Proceedings of the 1998 International

Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’98), 883-890, Las Vegas, 1998.

[121] M. A. O’Neil and M. Burtscher. Microarchitectural Performance Characterization
of Irregular GPU Kernels. In Workload Characterization (IISWC), 2014 IEEE
International Symposium on, pages 130-139, Oct 2014.

[122] M. S. Orr, S. Che, A. Yilmazer, B. M. Beckmann, M. D. Hill, and D. A. Wood.
Synchronization Using Remote-Scope Promotion. In Proceedings of the Twentieth

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’15, pages 73—86, New York, NY, USA, 2015. ACM.

[123] E. Park, L. N. Pouche, J. Cavazos, A. Cohen, and P. Sadayappan. Predictive
Modeling in a Polyhedral Optimization Space. In International Symposium on Code
Generation and Optimization (CGO 2011), pages 119-129, April 2011.

[124] Paulius Micikevicius. Performance Optimization: Programming
Guidelines and GPU Architecture Reasons Behind Them. http://on-
demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-
Guidelines-GPU-Architecture.pdf, 2013.

[125] Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer
Academic Publishers, Norwell, MA, USA, 1992.

[126] G. Pekhimenko, E. Bolotin, N. Vijaykumar, O. Mutlu, T. C. Mowry, and S. W.
Keckler. A Case for Toggle-aware Compression for GPU Systems. In 2016 IEEE

https://developer.download.nvidia.com/compute/.../CUDA_Occupancy_calculator.xls
https://developer.download.nvidia.com/compute/.../CUDA_Occupancy_calculator.xls
http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf

Bibliography 142

International Symposium on High Performance Computer Architecture (HPCA),
pages 188-200, March 2016.

[127] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D. Hill, S. K.
Reinhardt, and D. A. Wood. Heterogeneous System Coherence for Integrated
CPU-GPU Systems. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-46, pages 457-467, New York, NY, USA,
2013. ACM.

[128] Parallel Thread Execution ISA, Version 4.3. http://docs.nvidia.com/cuda/
parallel-thread-execution, 2016.

[129] G. Ravindran and M. Stumm. A Performance Comparison of Hierarchical Ring-
and Mesh- Connected Multiprocessor Networks. In Proceedings of the 3rd IEEE
Symposium on High-Performance Computer Architecture, HPCA 97, pages 58—,
Washington, DC, USA, 1997. IEEE Computer Society.

[130] M. Rhu, M. Sullivan, J. Leng, and M. Erez. A Locality-aware Memory Hier-
archy for Energy-efficient GPU Architectures. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-46, pages 86—
98, New York, NY, USA, 2013. ACM.

[131] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory
Access Scheduling. In Proceedings of the 27th Annual International Symposium
on Computer Architecture, ISCA 00, pages 128—138, New York, NY, USA, 2000.
ACM.

[132] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Cache-Conscious Wavefront
Scheduling. In Proceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-45, pages 72—-83, Washington, DC, USA,
2012. IEEE Computer Society.

[133] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Divergence-aware Warp Schedul-
ing. In Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-46, pages 99-110, New York, NY, USA, 2013. ACM.

[134] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-
m. W. Hwu. Optimization Principles and Application Performance Evaluation of
a Multithreaded GPU Using CUDA. In Proceedings of the 13th ACM SIGPLAN

http://docs.nvidia.com/cuda/parallel-thread-execution
http://docs.nvidia.com/cuda/parallel-thread-execution

Bibliography 143

Symposium on Principles and Practice of Parallel Programming, PPoPP 08, pages
73-82, New York, NY, USA, 2008. ACM.

[135] S.Ryoo, C.I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, J. A. Stratton,
and W.-m. W. Hwu. Program Optimization Space Pruning for a Multithreaded GPU.
In Proceedings of the 6th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’08, pages 195-204, New York, NY, USA, 2008.
ACM.

[136] J. Sartori and R. Kumar. Branch and Data Herding: Reducing Control and
Memory Divergence for Error-Tolerant GPU Applications. /IEEE Transactions on
Multimedia, 15(2):279-290, Feb 2013.

[137] S. Seabold and J. Perktold. Statsmodels: Econometric and Statistical Modeling
with Python. In 9th Python in Science Conference, 2010.

[138] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,
A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan.
Larrabee: A Many-core x86 Architecture for Visual Computing. In ACM SIGGRAPH
2008 Papers, SIGGRAPH ’08, pages 18:1-18:15, New York, NY, USA, 2008. ACM.

[139] A. Sethia, D. Jamshidi, and S. Mahlke. Mascar: Speeding Up GPU Warps by
Reducing Memory Pitstops. In 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), pages 174—185, Feb 2015.

[140] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc. A Performance Analysis Framework
for Identifying Potential Benefits in GPGPU Applications. In Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 12, pages 11-22, New York, NY, USA, 2012. ACM.

[141] GPGPU-Sim Manual. http://gpgpu-sim.org/manual, 2014.

[142] M. D. Sinclair, J. Alsop, and S. V. Adve. Efficient GPU Synchronization With-
out Scopes: Saying No to Complex Consistency Models. In 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 647—
659, Dec 2015.

[143] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M. Aamodt. Cache
Coherence for GPU Architectures. 2014 IEEE 20th International Symposium on
High Performance Computer Architecture (HPCA), 0:578-590, 2013.

http://gpgpu-sim.org/manual

Bibliography 144

[144] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach.
Learn. Res., 15(1):1929-1958, January 2014.

[145] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly. Meta Opti-
mization: Improving Compiler Heuristics with Machine Learning. In Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation, PLDI "03, pages 77-90, New York, NY, USA, 2003. ACM.

[146] J. A. Stratton, C. Rodrigrues, I.-J. Sung, N. Obeid, L. Chang, G. Liu, and W.-
M. W. Hwu. Parboil: A Revised Benchmark Suite for Scientific and Commercial
Throughput Computing. Technical Report IMPACT-12-01, University of Illinois at
Urbana-Champaign, Urbana, March 2012.

[147] J. A. Stuart and J. D. Owens. Efficient Synchronization Primitives for GPUs.
CoRR, abs/1110.4623, 2011.

[148] G. Sun, C. Hughes, C. Kim, J. Zhao, C. Xu, Y. Xie, and Y. K. Chen. Moguls:
A Model to Explore the Memory Hierarchy for Bandwidth Improvements. In 38th

Annual International Symposium on Computer Architecture (ISCA), 2011, pages
377-388, June 2011.

[149] D. Tarjan and K. Skadron. The Sharing Tracker: Using Ideas from Cache Coher-
ence Hardware to Reduce Off-Chip Memory Traffic with Non-Coherent Caches. In
Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC °10, pages 1-10, Washington,
DC, USA, 2010. IEEE Computer Society.

[150] D. Tarjan, J. Meng, and K. Skadron. Increasing Memory Miss Tolerance for
SIMD Cores. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, SC °09, pages 22:1-22:11, New York, NY, USA,
2009. ACM.

[151] J. V. Tu. Advantages and Disadvantages of Using Artificial Neural Networks

versus Logistic Regression for Predicting Medical Outcomes. Journal of Clinical
Epidemiology, 49(11):1225 — 1231, 1996.

[152] S.-Z. Ueng, M. Lathara, S. S. Baghsorkhi, and W.-m. W. Hwu. CUDA-Lite:
Reducing GPU Programming Complexity. In Languages and Compilers for Parallel
Computing, pages 1-15, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Bibliography 145

[153] V. Volkov. Understanding Latency Hiding on GPUs. PhD thesis, EECS Depart-
ment, University of California, Berkeley, Aug 2016.

[154] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili. Dynamic Thread Block
Launch: A Lightweight Execution Mechanism to Support Irregular Applications on

GPUs. In Proceedings of the 42Nd Annual International Symposium on Computer
Architecture, ISCA ’ 15, pages 528-540, New York, NY, USA, 2015. ACM.

[155] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili. LaPerm: Locality Aware
Scheduler for Dynamic Parallelism on GPUs. In Proceedings of the 43rd Interna-
tional Symposium on Computer Architecture, ISCA *16, pages 583-595, Piscataway,
NJ, USA, 2016. IEEE Press.

[156] T. E. Westberg, C. S. Rode, and B. G. Burns. Video Computer System including
Multiple Graphics Controllers and Associated Method. US Patent 4862156A, Aug
1989.

[157] Wolfram Mathworld. Least Squares Fitting. http://mathworld.wolfram.
com/LeastSquaresFitting.html, 2018.

[158] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou. GPGPU
Performance and Power Estimation Using Machine Learning. In 2015 IEEE 21st
International Symposium on High Performance Computer Architecture (HPCA),
HPCA ’15, Burlingame, CA, USA, 2015.

[159] P. Xiang, Y. Yang, and H. Zhou. Warp-level Divergence in GPUs: Characteriza-
tion, Impact, and Mitigation. In 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA), pages 284-295, Feb 2014.

[160] S. Xiao and W. Chun Feng. Inter-block GPU Communication via Fast Barrier
Synchronization. In /PDPS, pages 1-12. IEEE, 2010.

[161] X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang. Coordinated Static and
Dynamic Cache Bypassing for GPUs. In 21st IEEE International Symposium on
High Performance Computer Architecture, HPCA 2015, Burlingame, CA, USA,
February 7-11, 2015, pages 76-88, 2015.

[162] Q. Xu, H. Jeon, and M. Annavaram. Graph Processing on GPUs: Where are the
bottlenecks? In 2014 IEEE International Symposium on Workload Characterization
(IISWC), Oct 2014.

http://mathworld.wolfram.com/LeastSquaresFitting.html
http://mathworld.wolfram.com/LeastSquaresFitting.html

Bibliography 146

[163] S. Yan, G. Long, and Y. Zhang. StreamScan: Fast Scan Algorithms for GPUs
Without Global Barrier Synchronization. In Proceedings of the 18th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP *13, pages
229-238, New York, NY, USA, 2013. ACM.

[164] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A GPGPU Compiler for Memory
Optimization and Parallelism Management. In Proceedings of the 31st ACM SIG-

PLAN Conference on Programming Language Design and Implementation, PLDI
"10, pages 8697, New York, NY, USA, 2010. ACM.

[165] Y. Yang, P. Xiang, M. Mantor, N. Rubin, and H. Zhou. Shared Memory Multi-
plexing: A Novel Way to Improve GPGPU Throughput. In Proceedings of the 2 1st
International Conference on Parallel Architectures and Compilation Techniques,

PACT °12, pages 283-292, New York, NY, USA, 2012. ACM.

[166] Y. Yang, P. Xiang, M. Mantor, and H. Zhou. CPU-assisted GPGPU on Fused
CPU-GPU Architectures. In Proceedings of the 2012 IEEE 18th International
Symposium on High-Performance Computer Architecture, HPCA *12, pages 1-12,
Washington, DC, USA, 2012. IEEE Computer Society.

[167] A. Yazdanbakhsh, B. Thwaites, H. Esmaeilzadeh, G. Pekhimenko, O. Mutlu, and
T. C. Mowry. Mitigating the Memory Bottleneck With Approximate Load Value
Prediction. IEEE Design Test, 33(1):32—42, Feb 2016.

[168] A. Yilmazer and D. Kaeli. HQL: A Scalable Synchronization Mechanism for
GPUs. In 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing, pages 475-486, May 2013.

[169] G. L. Yuan, A. Bakhoda, and T. M. Aamodt. Complexity Effective Memory
Access Scheduling for Many-core Accelerator Architectures. In Proceedings of the
42Nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
42, pages 3444, New York, NY, USA, 2009. ACM.

[170] S. M. Zahedi and B. C. Lee. REF: Resource Elasticity Fairness with Sharing
Incentives for Multiprocessors. In Proceedings of the 19th International Confer-

ence on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’14, pages 145-160, New York, NY, USA, 2014. ACM.

Bibliography 147

[171] S. M. Zahedi, Q. Llull, and B. C. Lee. Amdahl’s Law in the Datacenter Era: A
Market for Fair Processor Allocation. In 2018 IEEE 24th International Symposium
on High Performance Computer Architecture (HPCA), Feb 2018.

[172] X. Zhao, S. Ma, C. Li, L. Eeckhout, and Z. Wang. A Heterogeneous Low-cost
and Low-latency Ring-Chain Network for GPGPUs. In 2016 IEEE 34th International
Conference on Computer Design (ICCD), pages 472-479, Oct 2016.

[173] X.Zhao, S. Ma, Y. Liu, L. Eeckhout, and Z. Wang. A Low-cost Conflict-free NoC
for GPGPUs. In Proceedings of the 53rd Annual Design Automation Conference,
DAC ’16, pages 34:1-34:6, New York, NY, USA, 2016. ACM.

[174] X. Zhao, Y. Liu, A. Adileh, and L. Eeckhout. LA-LLC: Inter-Core Locality-
Aware Last-Level Cache to Exploit Many-to-Many Traffic in GPGPUs. [EEE
Computer Architecture Letters, 16(1):42—45, Jan 2017.

[175] A. K. Ziabari, J. L. Abelldn, Y. Ma, A. Joshi, and D. Kaeli. Asymmetric NoC
Architectures for GPU Systems. In Proceedings of the 9th International Symposium
on Networks-on-Chip, NOCS ’15, pages 25:1-25:8, New York, NY, USA, 2015.
ACM.

	Introduction
	The Problem
	Inadequate Bandwidth Resources
	Poor Cache Management
	High Thread-level Parallelism
	Implications of Bandwidth Bottlenecks
	Summary

	Contributions
	Cost-effective Scaling of Bandwidth Resources
	Cooperative Caching for L1 Caches
	Managing Thread-level Parallelism
	Summary

	Published Work
	Organization

	GPU Computing
	Programming Model
	GPU Architecture
	Warp Scheduling
	GPU Memory Hierarchy
	Memory Coalescing

	Evaluating and Mitigating Bandwidth Bottlenecks
	Overview
	Background
	Baseline Architecture
	Simulation Framework
	Workloads

	Motivation
	Limits of Latency Tolerance in GPUs
	Performance Impact of Reducing Congestion

	Dissecting the Bandwidth Bottleneck
	Implications of Congestion
	Causes of Congestion

	Consolidating the Design Space
	Off-chip Memory
	L2 Cache
	L1 Cache

	Design Space Exploration
	Results
	Summary

	Cost-Benefit Analysis
	Cost-effective Design Space
	Asymmetric Crossbar
	Results with Cost-effective Configuration

	Related Work
	Cache Bypassing and Request Reordering
	On-chip Networks in GPUs
	Design Space Exploration

	Conclusion

	Cooperative Caching for GPUs
	Overview
	Background
	Baseline Architecture
	Workloads

	Need for Cooperation
	Inter-core Reuse
	Efficacy of Cooperation

	Cooperative Caching
	Analytical Model
	Architecture
	Shadow Tags
	Request Throttler
	Working Example

	Evaluation
	Implementation
	Experimental Setup
	Results
	Hardware Cost
	Sensitivity Analysis
	Discussion

	Comparative Study
	Increasing L2 Banks
	Sharing Tracker
	Clustered Sharing
	Summary

	Related Work
	Cooperative Caching in CMPs
	Ring Network
	Shadow Tags
	Cache Management
	Thread Block Scheduling

	Conclusion

	Managing Thread-level Parallelism
	Overview
	Background
	Baseline Architecture
	Supervised Learning

	Motivation
	Cache-Conscious Wavefront Scheduling
	Priority-based Cache Allocation
	Pitfalls in Prior Techniques
	Summary

	Poise: A System Overview
	Machine Learning Framework
	Analytical Model
	Feature Vector Representation
	Training Methodology
	Regression Model

	Hardware Inference Engine
	Prediction Stage
	Correction Stage
	Warp Scheduler
	Summary

	Evaluation
	Workloads
	Regression Model Evaluation
	Experimental Methodology
	Performance
	L1 Cache Hit Rate
	Average Memory Latency
	Sensitivity Study
	Case Study
	Hardware Overheads
	Discussion

	Related Work
	Cache Management and Warp Scheduling
	Machine Learning in Systems

	Conclusion

	Conclusion
	Contributions
	Scaling the Bandwidth Resources
	Supplementing the Bandwidth Resources
	Utilizing the Bandwidth Resources

	Critical Analysis
	Ease of Adoption
	Portability
	Evaluation Methodology
	Other Inefficiencies in the Memory Hierarchy

	Future Work
	Concluding Remarks

	Bibliography

