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ABSTRACT

Due to lack of sufficient compute threads in memory-intensive
applications, GPUs often exhaust all the active warps and
therefore, the memory latencies get exposed and appear in
the critical path. In such a scenario, the shared on-chip and
off-chip memory bandwidth appear more performance criti-
cal to cores with few or no active warps, in contrast to cores
with sufficient active warps.

In this work, we use the slack of memory responses as a
metric to identify the criticality of shared bandwidth to dif-
ferent cores. Consequently, we propose a slack-aware DRAM
scheduling policy to prioritize requests from cores with neg-
ative slack, ahead of row-buffer hits. We also propose a re-
quest throttling mechanism to reduce the shared bandwidth
demand of cores that have enough active warps to sustain
execution. The above techniques help in reducing the mem-
ory latencies that appear in the critical path by increasing
the memory latencies that can be hidden by multithread-
ing.
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1. INTRODUCTION

GPUs employ heavy multithreading to overlap the high la-
tency memory operations with concurrent execution. When
a warp executing on an SIMT core encounters a long la-
tency memory operation, it is de-scheduled and deemed in-
active, and a new warp is scheduled from a pool of active
warps. In memory-intensive applications, cores often ex-
haust all the active warps thereby exposing the latency of
memory operations. In such a scenario, the shared on-chip
and off-chip memory bandwidth appear more performance
critical to cores with few or no active warps, in contrast to
cores with sufficient active warps. Therefore, when such dis-
parate cores are present during the same epoch of execution,
the criticality of the available memory bandwidth varies for
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Figure 1: Slack distribution for dwt2D

different cores. In the existing policy, however, the pend-
ing memory request tries to acquire a fraction of the shared
memory bandwidth as soon as it is conceived, while being
oblivious to the relative criticality of the shared bandwidth
across other cores.

In addition, memory latencies in memory-intensive appli-
cations often exceed the normal memory latencies by a factor
of 2-3x. This is because each core employs a greedy policy
to acquire the shared bandwidth in order to maximize its
own bandwidth utilization, thereby excessively depleting the
shared bandwidth and causing congestion. It is analogous to
the Tragedy of the Commons, a problem in economics where
a strategy best for an individual in using an unregulated
common resource may not yield the most optimal outcome
for the group.

In summary, the existing policy of allocating shared on-
chip and off-chip memory bandwidth presents two major
shortcomings— @ allocating bandwidth to cores without re-
gard to their criticality, and @ excessive depletion of avail-
able bandwidth leading to congestion and therefore high
memory latencies.

2. SHARED BANDWIDTH MANAGEMENT

To measure the difference in criticality of shared memory
bandwidth on different cores, we record the slack in utilizing
a cache line that is newly fetched from the lower levels of the
memory. We refer to the slack as positive if the memory re-
sponse arrives sooner than it is required to prevent the core
from stalling, and negative if the memory response arrives
after the core has stalled. Therefore, positive slack is pro-
portional to the number of active warps on a core whereas
negative slack is equal to the cycles for which the core has
been stalled since the last issue cycle. In Figure 1, we ana-
lyze dwt2D, a representative memory-intensive benchmark,



and record the slack for each memory response that arrives
at the cores. For our experiments, we model a Fermi-like
architecture on GPGPU-Sim. We observe that despite high
negative slack (also indicated by high stall cycle percent-
age of 57%), there is a considerable positive slack as well.
We also detect the presence of positive and negative slack
across different cores, coinciding in the same epoch of exe-
cution, where the epoch length is 100 cycles. We observe
that in such epochs, on average 22.19% of the total negative
slack overlaps with positive slack. It indicates that there ex-
ists an opportunity to prioritize memory requests from cores
that are scarce in active warps (poor cores) over cores that
have sufficient active warps (rich cores). It can lead to a
reduction in stall cycles of poor cores without impacting the
performance of rich cores. In addition, high average mem-
ory latency (AML) of 461 cycles, in contrast to the normal
off-chip memory latency of 220 cycles, indicates high level of
congestion in the memory system. Therefore, regulating the
shared bandwidth allocation also presents an opportunity to
reduce the severity of congestion.

To this end, we propose the following two techniques to
address the shortcomings discussed above.

O Slack-aware DRAM scheduling. In epochs where cores
with disparity in slack are detected, the proposed scheduler
prioritizes requests from cores with negative slack, ahead of
row-buffer hits. Therefore, it reduces the memory latencies
that lie in the critical path (reducing negative slack) at the
cost of increasing the latencies that can still be hidden by
multithreading (reducing positive slack). Among cores with
varying negative slack, we prioritize cores that are stalled
for the longest durations as they have more accumulated
pending hits on outstanding memory requests from other
warps, allowing more warps to resume execution upon re-
ceiving memory response.

@ Request throttling. While the above DRAM scheduling
policy regulates the off-chip bandwidth allocation, the con-
gestion in the on-chip memory hierarchy plays an important
role in leading to high memory latencies. Therefore, in the
proposed scheme, we throttle the rate of sending requests to
the shared level for cores that contain high number of active
warps, resulting in reduced congestion in the memory sys-
tem without penalizing performance. In other words, lower
the slack of a core, higher the bandwidth allocated to the
core.

With the above techniques, preliminary results for dwt2D
suggest a 7% reduction in negative slack and a 5% reduction
in AML.

3. RELATED WORK

Jog et al. [2] proposed a DRAM scheduling policy based on
core criticality, focusing solely on off-chip bandwidth man-
agement. In contrast, we propose a comprehensive policy for
regulating on-chip bandwidth (via request throttling) and
off-chip bandwidth (via slack-aware scheduling). In addi-
tion, they consider a metric that accords equal priority to
all stalled cores. On the other hand, we assign different
priorities to the stalled cores based on the slack metric, to
benefit from the accumulated pending hits on outstanding
memory requests.

Ebrahimi et al. [1] proposed source-throttling in the realm
of CMPs with the objective of improving fairness in utilizing
shared resources by different applications running on differ-
ent cores. Similarly, other works have employed fairness
oriented schemes to prevent starvation of applications in a
co-scheduled environment. For instance, Mutlu et al. [3] pro-
posed batch scheduling to prevent starvation of non-memory-
intensive application over a memory-intensive application
when both applications are scheduled together. In contrast,
our work presents a memory management policy for threads
within the same application, running on different cores in a
GPU during different phases of execution.
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