
Characterizing Memory Bottlenecks in GPGPU
Workloads

Saumay Dublish, Vijay Nagarajan, Nigel Topham
University of Edinburgh

{saumay.dublish, vijay.nagarajan, nigel.topham}@ed.ac.uk

Abstract—GPUs are often limited by the off-chip memory
bandwidth. With the advent of general-purpose computing on
GPUs, cache hierarchy has been introduced to filter the band-
width demand to the off-chip memory. However, the cache
hierarchy presents its own bandwidth limitations in sustaining
such high levels of memory traffic. In this work, we characterize
the bandwidth bottleneck in GPUs present across the memory
hierarchy for general-purpose applications. We show that the
improvement in performance achieved by mitigating the band-
width bottleneck in the cache hierarchy can exceed the speedup
obtained by a memory system with a baseline cache hierarchy and
high bandwidth off-chip memory. We also show that addressing
the bandwidth bottleneck in isolation at specific levels can be
sub-optimal and can even be counter-productive. Therefore, we
show that it is imperative to resolve the bandwidth bottleneck
synergistically across different levels of the memory hierarchy.

I. INTRODUCTION

Since the introduction of memory hierarchies in GPUs,
scientific and enterprise workloads have increasingly used
GPUs to address their massive computational demands. Such
workloads present a high demand on the off-chip memory
bandwidth and therefore, the cache hierarchy helps in filtering
the bandwidth demand to the off-chip memory. However, due
to high cache miss rates and cache thrashing, the off-chip
bandwidth bottleneck is only partly mitigated. In addition, the
cache hierarchy exposes its own bandwidth limitations in sus-
taining such high levels of memory traffic [1], thereby resulting
in high congestion in the memory system. Therefore, scattered
nature of the bandwidth bottlenecks in GPUs motivate us to
analyze the bandwidth implications of the memory hierarchy
as a whole.

To this end, we aim to characterize and understand the
severity of the bandwidth problem posed by the three levels
of the memory hierarchy, viz., private L1s, shared L2 and off-
chip memory, and also characterize the role of their peripheral
network elements such as interconnects and request buffers.
We show that due to bandwidth limitation, there is severe
congestion between the L1 and L2 as well as between the
L2 and off-chip memory. Such high levels of congestion
lead to increased memory latencies which has three major
implications. 1 In memory-intensive applications, due to
insufficient computation to mask such high memory latencies,
such latencies appear in the critical path of system perfor-
mance. 2 High latencies of outstanding miss requests lead
to prolonged contention of cache resources such as Miss
Status Holding Registers (MSHRs) and replaceable cache

 0

 1

 2

 3

 4

 5

 6

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Performance plateau

IP
C

 (
n
o
rm

a
liz

e
d
 t
o
 b

a
s
e
lin

e
)

L1 miss latency

cfd
dwt2d

leukocyte
nn
nw
sc

lbm
ss

Fig. 1. Performance variation with increasing L1 miss latency.

lines. This effect increases the memory latencies even further
as succeeding requests get serialized and have to wait for
outstanding misses to complete and relinquish the resources.
3 Back pressure from a congested lower level further throttles

the cache pipeline and prevents it from operating at peak
throughput, exacerbating the bandwidth limitation in the cache
hierarchy. A combination of the above factors force the cores
to stall, leading to performance degradation.

II. LATENCY TOLERANCE PROFILE

Memory-intensive applications often run into memory
misses causing all of the warps to stall due to pending memory
instructions. In such a case, miss latencies get exposed due
to lack of sufficient overlapping computation and therefore
lie in the critical path, directly impacting performance. Fig.1
shows the impact of memory latencies on performance using a
representative set of benchmarks. Our baseline architecture is
modeled upon Nvidia’s GTX480 Fermi GPU and is simulated
using GPGPU-Sim. In this study, we modify the memory
hierarchy of the baseline architecture so that all the L1 miss
responses are returned with a fixed and pre-determined latency
that is varied in the simulator and is represented on the x-axis.
The resultant performance is plotted on the y-axis which is
normalized to the performance of the baseline architecture.

We make two major observations about the baseline mem-
ory latencies, i.e., the point on the x-axis where the per-
formance curve intercepts the IPC of 1× (shaded region),
and therefore, matches the average memory latency of the
baseline architecture. 1 For most benchmarks, the baseline
memory latencies are significantly higher than the latencies
of performance plateau (or peak performance). Therefore,
the baseline performance is far from saturation with respect



to memory latencies. 2 The baseline memory latencies are
also critically higher than the ideal access latencies of L2
(120 cycles) and DRAM (additional 100 cycles via L2). This
suggests that there is considerable congestion in the memory
system since traversing the memory system takes significantly
higher latencies than the minimum memory access latencies
of L2 and DRAM. In summary, the above results indicate that
there lies a significant opportunity to improve performance by
reducing the memory latencies incurred due to congestion in
the memory hierarchy.

III. MEASURING THE BANDWIDTH BOTTLENECK

We quantify the congestion between L1 and L2 by measur-
ing the occupancy of the L2 access queues. We observe that on
average, the L2 access queues are full for 46% of their usage
lifetime. Similarly, we quantify congestion at the DRAM and
observe that the DRAM access queues are full for 39% of their
usage lifetime. High occupancy of queues across the memory
hierarchy suggests high levels of congestion. Furthermore,
we note that as congestion propagates higher in the memory
hierarchy, the resultant back pressure throttles the caches (and
cores) and prevents them from operating at peak throughput.
However, even sufficiently provisioning the memory resources
to allow the memory system to operate at peak throughput may
not completely resolve the bandwidth bottleneck as the peak
throughput itself can be a limiting factor. Therefore, in the next
section, we discuss the design parameters that either allow the
caches (and cores) to achieve peak throughput or increases
the peak throughput itself, thus alleviating congestion in the
memory hierarchy.

IV. DESIGN-SPACE EXPLORATION AND RESULTS

We summarize our architectural design space in Table I.
We categorize each parameter based on whether it increases
the peak throughput (shown as ‘+’ type) or enables the
corresponding memory level in achieving the existing peak
throughput (shown as ‘=’ type). To evaluate the design-
space, we increase the listed architectural parameters to up
to 4× their initial values. We make an exception when such
scaling reaches a saturation. Note that we choose the scaling
coefficient as 4× just to demonstrate the potential of resolving
congestion at each level of the memory hierarchy. The actual
scaling would also take into account the cost overheads
incurred in scaling each parameter.

Upon scaling the architectural parameters at the respec-
tive levels of the memory hierarchy, we observe an average
speedup of 4%, 59% and 11% on increasing the bandwidth
of L1, L2 and DRAM alone. We further observe an average
speedup of 69% and 76% on increasing the combined band-
width of L1-L2 and L2-DRAM respectively, which is greater
than the respective sum of the individual gains. Therefore, we
demonstrate that synergistic scaling yields better results than
increasing the bandwidth at the memory levels independently.
This is because solving the problem in isolation can lead
to even more congestion elsewhere in the memory system.
For instance, we observe that to prevent throttling of L1

TABLE I
CONSOLIDATED DESIGN SPACE TO MITIGATE CONGESTION.

Design Parameter Type Baseline value Scaled value (∼4×)
(a) DRAM

Scheduler queue = 16 entries 64 entries
DRAM Banks = 16 banks/chip 64 banks/chip

Bus width + 32-bits/chip 64-bits/chip
(b) L2 Cache

L2 miss queue = 8 entries 32 entries
L2 response queue = 8 entries 32 entries

MSHR = 32 entries 128 entries
L2 access queue = 8 entries 32 entries

L2 data port + 32 bytes 128 bytes
Flit size (crossbar) + 4 bytes 16 bytes

L2 banks + 2 banks/partition 8 banks/partition
(c) L1 Cache

L1 miss queue = 8 entries 32 entries
MSHR (L1D) = 32 entries 128 entries

Memory pipeline width = 10 40

cache, increasing the L1 bandwidth by increasing the MSHRs
to handle more outstanding misses can lead to performance
degradation due to an even higher congestion between L1
and L2. However, matching the increased bandwidth demand
of L1 at L2 significantly improves performance. The average
performance improvements also suggest that mitigating con-
gestion in the cache hierarchy exceeds the benefit obtained
by a memory system with baseline cache hierarchy and high
bandwidth off-chip memory.

V. CONCLUSION AND FUTURE WORK

In this work, we demonstrate the bandwidth limitations
posed by the memory system in GPUs for general-purpose
workloads. We show that the bandwidth bottlenecks lead to
high congestion in the memory system, in turn leading to high
latencies that appear in the critical path. We perform a design-
space exploration and show that increasing the bandwidth in
isolation at specific levels of the memory hierarchy can be
sub-optimal, and can even lead to performance degradation.
We also show that the performance improvement obtained
by synergistically improving the bandwidth of the cache
hierarchy surpasses the speedup achieved by a memory system
with baseline cache hierarchy and high bandwidth DRAM.
Therefore, we demonstrate the criticality of the bandwidth
bottleneck in the cache hierarchy. In future, we plan to assess
the complexity and cost of the various design configurations
in order to evaluate most cost-effective ways to mitigate the
bandwidth bottleneck.

REFERENCES

[1] A. Sethia, D. Jamshidi, and S. Mahlke, “Mascar: Speeding up GPU
warps by reducing memory pitstops,” in High Performance Computer
Architecture (HPCA), 2015 IEEE 21st International Symposium on,
pp. 174–185, Feb 2015.

[2] K. Kim, S. Lee, M. K. Yoon, G. Koo, W. W. Ro, and M. Annavaram,
“Warped-preexecution: A GPU pre-execution approach for improving
latency hiding,” in 2016 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), pp. 163–175, March 2016.

[3] G. Sun, C. Hughes, C. Kim, J. Zhao, C. Xu, Y. Xie, and Y. K. Chen,
“Moguls: A model to explore the memory hierarchy for bandwidth
improvements,” in 38th Annual International Symposium on Computer
Architecture (ISCA), 2011, pp. 377–388, June 2011.


